
Vernissage Result File Access & Export
Version 2.2 • 31 October 2014

Help Line:

German Headquarters and Service Centre:

Scienta Omicron GmbH

Limburger Str. 75

65232 Taunusstein, Germany

Tel.: +49(0) 61 28 / 987-230

Fax: +49(0) 61 28 / 987-33-230

E-Mail: services@scientaomicron.com

PN05322

Preface 2 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Preface

This document has been compiled with great care and is believed to be correct at the date of print. The
information in this document is subject to change without notice and does not represent a commitment on the
part of Omicron NanoTechnology GmbH.

Notice
Some components described in this manual may be optional. The delivery volume depends
on the ordered configuration.

Notice
This documentation is available in English only.

Caution

Please read the safety information in all related manuals before using the
instrument.

Notice

Trademarks: Channeltron is a registered trademark of Galileo Electro-

Optics Corporation. Viton is a registered trademark of

DuPont Dow Elastomers. Kapton is a registered trademark of DuPont Films.

Swagelok is a registered trademark of the Crawford Fitting Company.

MULTIPROBE, ESCAPROBE and MULTISCAN LAB are registered
trademarks of OMICRON NanoTechnology GmbH. Other product names
mentioned herein may also be trademarks and/or registered trademarks of
their respective companies.

Copyright

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose without the express written permission of
Omicron NanoTechnology GmbH.

Warranty

Omicron acknowledges a warranty period of 12 months from the date of delivery (if not otherwise stated) on
parts and labour, excluding consumables such as filaments, sensors, etc.

No liability or warranty claims shall be accepted for any damages resulting from non-observance of
operational and safety instructions, natural wear of the components or unauthorised repair attempts.

Contents 3 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Contents

Preface ... 2
Copyright ... 2
Warranty .. 2

Contents .. 3
List of Figures .. 5
List of Tables ... 6

1. What is Vernissage? .. 8
Getting Started .. 8
Vernissage File Path Systematic ... 9

2. Vernissage Graphical User Interface ... 11
Preferences ... 12
Loading Data into Vernissage .. 13
Exporting Data from Vernissage .. 14
Converting Data ... 17
View Options ... 17

Preview Tools ... 18
Result Set Table ... 18
Objects Table ... 19
Objects List ... 20
Sorting .. 21
Parameter Data .. 22
Comments .. 22
Calibration .. 23
Merge Windows .. 23

Filtering .. 24
Preview Area ... 26

3. Using the Batch Mode ... 30

4. Understanding the Result File System .. 33
Experiment Result Terminology ... 33
How Vernissage Processes Result Sets ... 36
Understanding MATRIX Experiments .. 36
Data Types and Formats ... 37
Understanding Data Views .. 39
Axes and Axis Hierarchies ... 40
Axis Parameters .. 42
Related Bricklets .. 43
Raw Data Organisation.. 44

5. The Vernissage Programming Interface .. 46
Accessing Vernissage Facilities from Your Application Code .. 46
Getting Access to the Vernissage Core Libraries and Session Object .. 47
Loading and Unloading Result Files .. 49
Building Exporter Plug-Ins ... 49

Anatomy of an Exporter Plug-In ... 51
Iterating through the Bricklet Collection .. 55
Retrieving Related Bricklets ... 57
Obtaining Bricklet Information .. 57

Contents 4 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Accessing Raw Data .. 64
Miscellaneous Services ... 67

6. Flat File Format Reference ... 68
General Structure .. 68
Bricklet Container File Structure .. 70

File Identification .. 70
Axis Hierarchy Description ... 71
Channel Description ... 72
Creation Information .. 74
Raw Data ... 74
Sample Position Information .. 74
Experiment Information .. 75
Experiment Parameter List... 77
Experiment Element Deployment Parameter List .. 78

7. Service Routines Reference ... 79
addMessage .. 79
ansiToUnicode .. 80
clearMessages .. 81
closeOutputFile ... 82
createDirectory .. 83
createOutputFile .. 84
directoryExists ... 86
eraseResultSets .. 87
getAxisClocks .. 88
getAxisDescriptor .. 89
getAxisParameter .. 91
getAxisParameters .. 92
getAxisTableSets .. 93
getAxisUnit .. 94
getBrickletCount .. 95
getBrickletDataItemCount ... 96
getCalibrationInformation .. 97
getChannelGroupName .. 98
getChannelInstanceName ... 99
getChannelName .. 100
getChannelRawMax .. 101
getChannelRawMin ... 102
getChannelUnit ... 103
getCreationComment .. 104
getCreationTimestamp .. 105
getDataComments .. 106
getDataSetName ... 107
getDependingBricklets .. 108
getDimensionCount ... 109
getExperimentElementDeploymentParameter .. 110
getExperimentElementDeploymentParameters .. 111
getExperimentElementInstanceNames ... 112
getExperimentElementParameter ... 113
getExperimentElementParameters ... 114
getExperimentInfo ... 115
getMessages ... 116
getMetaData .. 117
getNextBricklet .. 118
getParentResultFileSpec... 119

Contents 5 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getPlainAxisName ... 120
getPlugInInfo ... 121
getPlugInPath .. 122
getPlugModuleCount ... 123
getPredecessorBricklet .. 124
getRawMax .. 125
getRawMin ... 126
getReferencedBricklets.. 127
getResultDataFileSpec .. 128
getRootAxisName .. 129
getRootAxisQualifiedName.. 130
getRunCycleCount .. 131
getSampleName .. 132
getScanCycleCount ... 133
getSequenceId .. 134
getSession ... 135
getSpatialInfo ... 136
getSuccessorBricklet ... 138
getTriggerAxisName .. 139
getTriggerAxisQualifiedName .. 140
getType .. 141
getViewTypes .. 143
loadAllResultSets .. 144
loadBrickletContents .. 145
loadResultSet .. 147
makePath .. 148
releaseBrickletContext ... 149
releaseSession .. 150
showWorkInProgress... 151
splitPath ... 152
toPhysical .. 153
toRaw .. 154
unicodeToAnsi ... 155
unloadBrickletContents .. 156

Appendix: Raw Data Structures .. 157
SPM Bricklet Types ... 157
Electron Spectroscopy Bricklet Types ... 160

Service at Omicron ... 163

List of Figures

Figure 1. Vernissage entries in your Start menu. .. 8
Figure 2. Vernissage graphical user interface... 11
Figure 3. Main window File menu. .. 12
Figure 4. The Preferences window available from the tools menu.. 12
Figure 5. File selection for Vernissage. ... 13
Figure 6. Loading files per drag and drop. .. 14
Figure 7. Export dialogue window. .. 15
Figure 8. Vernissage plug-in information. ... 15
Figure 9. The View menu. ... 18
Figure 10. Preview tools, detached window. ... 18
Figure 11. Result Set Table. ... 18
Figure 12. Choose Columns for Result Set Table... 19

Contents 6 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Figure 13. Result Set Table context menu. .. 19
Figure 14. Objects Table, example shown. .. 19
Figure 15. Objects List, example shown. .. 20
Figure 16. Objects List context menu. .. 21
Figure 17. Parameter Data field, example shown. .. 22
Figure 18. Comments field. .. 22
Figure 19. Calibration field. ... 23
Figure 20. Vernissage GUI with merged windows. ... 23
Figure 21. Filter dialogue window. .. 24
Figure 22. Filtering data in Vernissage. .. 25
Figure 23. Filter set-up and selection. .. 25
Figure 24. The Preview area. ... 26
Figure 25. Preview area: tabs for accessing other scan directions. ... 26
Figure 26. Alignment options. ... 27
Figure 27. Preview area tools. .. 28
Figure 28. Properties pages from the preview context menu, examples shown. .. 28
Figure 29. Properties page of phase/amplitude data. ... 29
Figure 30. MATRIX result file relationships .. 34
Figure 31. Axis and triggered channel .. 41
Figure 32. Axis hierarchy .. 41
Figure 33. Relationship between Bricklets ... 44
Figure 34. Data order generated by single mirrored axis. .. 45
Figure 35. Data order generated by simple mirrored axis hierarchy ... 45
Figure 36. Data order generated by Y-X-V hierarchy (Volume CITS) ... 45
Figure 37. Raw data item format .. 68
Figure 38. Character sequence example — Encoding of ... 69
Figure 39. Floating point figure representation ... 69
Figure 40. SPM image data of a forward/backward up/down scan. ... 157
Figure 41. SPS curve data. .. 157
Figure 42. Volume CITS data of a forward/backward up/down scan. ... 158
Figure 43. Phase/amplitude curve data. ... 158
Figure 44. Force/distance curve data. .. 159
Figure 45. Atom manipulation curve data. .. 159
Figure 46. Curve data representing a segment from a continuous curve. .. 159
Figure 47. Unspecific curve data. ... 160
Figure 48. Electron spectroscopy data from a single energy range sweep. ... 160
Figure 49. Path spectroscopy data, energy switching policy point-wise. .. 160
Figure 50. Path spectroscopy data, energy switching policy point-wise. .. 161
Figure 51. Raw image map data, energy switching policy frame-wise. .. 161
Figure 52. Snapshot sequence data. .. 162
Figure 53. Image map data, energy switching policy frame-wise. .. 162
Figure 54. Electron spectroscopy image data of a generic image. ... 162

List of Tables

Table 1. Important paths used by Vernissage. ... 10
Table 2. Exporters versus Object Types. ... 17
Table 3. Important physical quantities and their unit representations in MATRIX. ... 38
Table 4. Parameter value types and type codes used by Vernissage. ... 39
Table 5. Result file and data management routines. .. 49
Table 6. Message management routines. .. 53
Table 7. Bricklet traversal routines. .. 55
Table 8. Routines for finding related Bricklets. ... 57
Table 9. Bricklet information routines. .. 58
Table 10. Channel information routines. ... 60

Contents 7 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Table 11. Axis information routines. .. 61
Table 12. Data transformation routines. .. 65
Table 13. Experiment element information routines .. 65
Table 14. Convenience routines. .. 67

1. What is Vernissage? 8 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

1. What is Vernissage?

Vernissage is a tool for accessing any kind of MATRIX measurement data from your data analysis application
and for exporting MATRIX result data into other output formats. The Vernissage application supports data
preview, browsing, advanced filtering and sorting. Also provided are dedicated plug-ins for data export to
different supported output formats such as ASCII, BMP, Omicron Flat File Format, IGOR 5, JPG, PNG, Phi
MultiPak, TIFF and VAMAS. However, you can extend the data conversion options by adding Vernissage
exporter plug-ins dedicated to other file formats.

If you want to utilise Vernissage for exporting MATRIX result files into a specific output format, you have two
options:

1. Visit the MATRIX website on the Internet (www.omicron.de/en/software-downloads/) and check the Plug-
Ins section: on this page Omicron offers ready-made Vernissage add-ons and example plug-in code for
you to download.

2. If you are somewhat familiar with C++ programming, you may also build and integrate your own
Vernissage exporter plug-in.

Notice
Presented code examples are fragments only. They cannot be run as stand-alone program
code.

Getting Started

After installation the Vernissage software can be accessed from the Start menu where it provides two entries:
a graphical user interface and a command prompt entry.

Figure 1. Vernissage entries in your Start menu.

The graphical user interface (GUI) is convenient for interactive data processing where you want to select the
relevant files manually. The command prompt method can be handy for batch processing, e.g. if you want to
export all measured data at the end of a lab session.

Notice
If you are not familiar with the way the MATRIX software organises result data please have
a look on page 33 first.

1. What is Vernissage? 9 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Vernissage File Path Systematic

The entire matter of paths is complicated business, even more so as it depends on the operating system and
the language of the operating system. Vernissage has three important paths that are relevant when manually
handling data files:

 The installation directory, denoted as <InstallDir>, where the executable file
resides and where the licence files go.

 The temporary directory, denoted as <TempDir>, where the log files are saved.

 The persistence root directory, denoted as <RootDir>, where the Vernissage.ini-
file goes.

MATRIX uses the system defined environment variables %TMP%, %APPDATA%, %PROGRAMFILES% and
%PROGRAMFILES(X86)% to generate the above paths. The schema works as follows:

Installation Directory

Windows XP: %PROGRAMFILES%\<Company Name>\<Application Name>\<Software Version>\
Windows 7 (32 bit): %PROGRAMFILES(X86)%\<Company Name>\<Application Name>\<Software Version>\

Temporary Directory

Windows XP & Windows 7: %TMP%\Temporary <Application Name> Files\ <Software Version>\

Persistence Root Directory

Windows XP & Windows 7: %APPDATA%\<Company Name>\<Application Name>\

Place Holders

<Company Name> = "Omicron NanoScience" (used to be "Omicron NanoTechnology" in V2.1 and earlier)
<Application Name> = "Vernissage" (or "MATRIX")
<Software Version>: = "V2.2" (used to be "V2.1" or lower)
<Account Name>: = "Omicron" (default super user), "Matrix" (default user) or your personal user name

Environment Variables

The environment variables can be accessed by typing their name, including both % signs, in the address line
of the Windows Explorer. Their contents depends on the operating system, its language and the account user
name under which you work.

Examples

The following table gives examples for the different paths for the two common operating systems (old and
new) as installed by Omicron.

1. What is Vernissage? 10 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Windows XP (English)

<InstallDir> C:\Program Files\Omicron NanoScience\Vernissage\V2.2\

%TMP%

<TempDir>

C:\temp\

C:\temp\Temporary Vernissage Files\V2.2

%APPDATA%

<RootDir>

C:\Documents and Settings\<Account Name>\Application Data\

C:\Documents and Settings\<Account Name>\Application Data\Omicron NanoScience\Vernissage\

Windows 7 (32 bit, English)

<InstallDir> C:\Program Files (x86)\Omicron NanoScience\Vernissage\V2.2\

%TMP%

<TempDir>

C:\Users\<Account Name>\AppData\Local\Temp\

C:\Users\<Account Name>\AppData\Local\Temp\Temporary Vernissage Files\V2.2

%APPDATA%

<RootDir>

C:\Users\<Account Name>\AppData\Roaming\

C:\Users\<Account Name>\AppData\Roaming\Omicron NanoScience\Vernissage\

Table 1. Important paths used by Vernissage.

2. Vernissage Graphical User Interface 11 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

2. Vernissage Graphical User Interface

Open Vernissage selecting Vernissage from the Microsoft Windows Start menu or via the desktop icon.

Figure 2. Vernissage graphical user interface.

2. Vernissage Graphical User Interface 12 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

At the top of the window four drop-down menus provide you with a number of options and actions.

Figure 3. Main window File menu.

 The File menu is for opening and exporting files.

 The View menu allows selecting GUI elements to be visible or invisible.

 The Tools menu allows invoking a Preferences dialogue.

 The Help menu offers information on the current Vernissage version and the
available exporters.

Preferences

In the Preferences window, available from the Tools menu, you can preselect import and export paths as well
as the export routine you want to use.

Figure 4. The Preferences window available from the tools menu.

2. Vernissage Graphical User Interface 13 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Loading Data into Vernissage

 To open single files or entire folders select the respective entry from the File menu.
Navigate to your Results folder, and select the items you want to load and click
Open.

Figure 5. File selection for Vernissage.

 Click Cancel to abort loading if desired. Note however, that data sets already
loaded at the time of requesting Cancel will stay loaded.

Notice
Hidden files are not shown by default in the
open dialogue. If you want to open hidden
files select "Show hidden files" from the
context menu.

2. Vernissage Graphical User Interface 14 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

 Alternatively drop files or folders into the Objects List or any other window except
the preview area inside Vernissage directly from the Windows Explorer.

Figure 6. Loading files per drag and drop.

The loaded data sets will be shown in the main window, see figure 2 on page 11.

Exporting Data from Vernissage

Vernissage comes with a number of ready-made plug-in modules for exporting into different file formats.
These can then be used as input files for your own software application. The Omicron Flat File Format has
been described in detail, see page 68.

To export all loaded or the selected data sets

 Click Export… or Export Selected Objects…

 Choose an export routine and a path to create data files in the selected format.

Alternatively

 Click Convert… or Convert Selected Objects… to perform an export using the
previously selected export routine and path.

2. Vernissage Graphical User Interface 15 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Figure 7. Export dialogue window.

The number and type of plug-ins currently linked to Vernissage can be accessed from the Help menu:

Figure 8. Vernissage plug-in information.

2. Vernissage Graphical User Interface 16 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

BMP Exporter The BMP Exporter plug-in module converts curve and image data from any
MATRIX experiment into the "Microsoft Windows Bitmap" format.

CasaXPS Exporter The CasaXPS Exporter is the same as the VAMAS Exporter but it additionally
forwards the converted data to the CasaXPS data analysis software if installed
on your PC. If the CasaXPS software is not running, Vernissage will launch it
automatically. Note: The following environment variables must be set:

 VERNISSAGE_CASA_XPS_LOCATION containing the path to the
CasaXPS installation directory and

 VERNISSAGE_CASA_XPS_PORT=7000

Flattener Exporter The Flat File Format is a binary data format storing raw measurement data as
well as additional information required to interpret the raw data correctly. For
more details see chapter Flat File Format Reference from page 68.

IGOR 5 Exporter This Exporter plug-in module is capable of exporting data acquired by MATRIX
SPM experiments and electron spectroscopy curves into the "IGOR 5" format
supported by the IGOR Pro technical graphing and data analysis software by
WaveMetrics, Inc.

JPG Exporter The JPG Exporter plug-in module converts curve and image data from any
MATRIX experiment into the JPEG image file interchange format ISO/IEC
10918-1 (or CCITT Recommendation T. 81, respectively.)

PHI MultiPak Exporter This Exporter plug-in module converts data from electron spectroscopy
experiments into file structures readable by the MultiPak data processing
software by Physical Electronics, Inc.

PNG Exporter The PNG Exporter plug-in module converts curve and image data from any
MATRIX experiment into the ISO 15948/IETF RFC 2083 "Portable Network
Graphics" format.

TIFF Exporter The TIFF Exporter plug-in module converts curve and image data from any
MATRIX experiment into the IETF RFC 2302 "Tagged Image File Format".

VAMAS Exporter The VAMAS Exporter plug-in converts data from electron spectroscopy
experiments (both spectra and image maps) into the ISO 14976: 1998 "Surface
chemical analysis — Data transfer format", often also referred to as "VAMAS
format" as it was defined by various members of the Versailles Project on
Advanced Materials and Standards (VAMAS) community. File contents
generated by the VAMAS Exporter can be interpreted by various 3rd party
software products, such as the CasaXPS data analysis software by Casa
Software, Ltd.

XY Curve Exporter This Exporter is capable of exporting one-dimensional result data such as
electron spectroscopy curves, data from SPM Single Point Spectroscopy
operations, Force/Distance curves, and similar. The plug-in will write plain text
files using a simple two-column format; important parameter settings will also be
included in the output generated.

Please note that the image format modules (BMP Exporter, JPG Exporter, PNG Exporter and TIFF Exporter)
are not capable of exporting result data from SPM volume CITS experiments.

If you want to transfer MATRIX data into a special format you can also write your own plug-ins and link them
to Vernissage. The greater part of the manual will explain how to do this.

2. Vernissage Graphical User Interface 17 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

"S
pm

 S
pe

ct
ro

sc
op

y"
 ~

S
es

si
on

::b
tc

_S
P

M
S

pe
ct

ro
sc

op
y

"A
to

m
 M

an
ip

ul
at

io
n"

 ~

S
es

si
on

::b
tc

_A
to

m
M

an
ip

ul
at

io
n

"F
or

ce
 C

ur
ve

"
~

S

es
si

on
::b

tc
_F

or
ce

C
ur

ve

"P
ha

se
/A

m
pl

itu
de

 C
ur

ve
"

~

S
es

si
on

::b
tc

_P
ha

se
A

m
pl

itu
de

C
ur

ve

"S
ig

na
l O

ve
r

T
im

e"
 ~

S
es

si
on

::b
tc

_S
ig

na
lO

ve
rT

im
e

"I
nt

er
fe

ro
m

et
er

 C
ur

ve
"

~

S
es

si
on

::b
tc

_I
nt

er
fe

ro
m

et
er

C
ur

ve

"1
D

 C
ur

ve
"

~

S
es

si
on

::b
tc

_1
D

C
ur

ve

"2
D

 S
pm

"
~

S
es

si
on

::b
tc

_S
P

M
Im

ag
e

"P
at

h
S

pe
ct

ro
sc

op
y"

 ~

S
es

si
on

::b
tc

_P
at

hS
pe

ct
ro

sc
op

y

"E
S

p
R

eg
io

n"
 ~

S
es

si
on

::b
tc

_E
S

pR
eg

io
n

"V
ol

um
e

C
IT

S
"

~

S
es

si
on

::b
tc

_V
ol

um
eC

IT
S

"R
aw

 P
at

h
S

pe
ct

ro
sc

op
y"

 ~

S
es

si
on

::b
tc

_R
aw

P
at

hS
pe

ct
ro

sc
op

y

"E
S

p
S

em
S

am
"

~

S
es

si
on

::b
tc

_D
is

cr
et

eE
ne

rg
yM

ap

"E
S

p
S

na
ps

ho
t S

eq
ue

nc
e"

 ~

S
es

si
on

::b
tc

_E
S

pS
na

ps
ho

tS
eq

ue
nc

e

"2
D

 E
S

p"
 ~

S

es
si

on
::b

tc
_E

S
pI

m
ag

e

"E
S

p
Im

ag
e

M
ap

"
~

S
es

si
on

::b
tc

_E
S

pI
m

ag
eM

ap

"ASCII Exporter" + + + + + + + + - - + - - - - -

"Flattener" + + + + + + + + + + + + + + + +

"IGOR5 Exporter" + + + + + + + + + + + + - + - -

"PHI MultiPak Exporter" - - - - - - - - + + - + + + + +

"BMP Exporter",
"JPG Exporter",
"PNG Exporter",

"TIFF Exporter"

+ + + + + + + + + + - + + + + +

"SCALA PRO Formatter" + - + - - - - + - - + - - - - -

"CasaXPS Exporter",
"VAMAS Exporter" - - - - - - - - + + - + + + + +

"XY Curve Raw Exporter",
"XY Curve Exporter" + + + + + + + - + + - + - + - -

Table 2. Exporters versus Object Types.

Converting Data

The Convert menu commands do the same as the corresponding Export commands but without the dialogue,
i.e. they export all or the selected files to the previously used destination employing the previously used export
routine. If no Export was performed prior to starting Convert, Vernissage uses the path and routine specified
in the Preferences window, see figure 4 on page 12.

View Options

The view menu allows selecting the elements to be shown, such as Preview Tools, Result Sets Table, Objects
Table, Objects List, Parameter Data, Calibration Data, Comments and Filter. All elements can be selected or
de-selected independently. All windows can be fixed to the main window frame or moved around freely.

2. Vernissage Graphical User Interface 18 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Figure 9. The View menu.

Preview Tools

The preview tools are normally attached to the right hand side window frame.

Figure 10. Preview tools, detached window.

With the Hand symbol you can move objects around in the preview area, while the arrow is for pointing and
selecting. With the arrow active you can also temporarily switch to the hand pointer using the Shift key.

Result Set Table

The Result Sets Table is normally located at the bottom of the window; it shares the space with the Objects
Table. A right-click on the table header lets you chose which columns to display in which order.

Figure 11. Result Set Table.

In the Choose Columns window select the information to be displayed and the positions of the columns. Click
OK when ready.

2. Vernissage Graphical User Interface 19 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Figure 12. Choose Columns for Result Set Table.

The Result Sets table context menu allows displaying messages (when you right click on the Load Status
column) and removing one or all result set(s) from the list (all columns).

Figure 13. Result Set Table context menu.

Objects Table

Instead of the selected information on the entire result sets you can also list all objects separately by selecting
the "Objects Table" tab at the bottom. As above, you can select the columns of interest by right-clicking the
table header. Hovering the curser over the dimensions column will display a tool tip stating the cannel
number, axes and measured signal/units.

Figure 14. Objects Table, example shown.

2. Vernissage Graphical User Interface 20 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Objects List

The Objects List is the most prominent feature in Vernissage after loading some data. It shows graphical
representations of the objects loaded, together with their names and rating. Some of the objects shown in the
figure below originate from an SPM experiment with data acquisition activated for forward and backward as
well as up and down scans, resulting in four images per object. For phase/amplitude curve pairs the related
curve is shown in the background.

A number of image overlays denote additional information

 Filled or empty golden stars denote the user rating of the image, if present.

 Little arrows denoting subsequent objects (repeated SPS, Signal over Time, ESp
Snapshot sequence).

 A dog ear indicates more than one Peak Background Set.

 Short descriptors in the top right corner of the thumbnails indicate different ESpec
acquisition types: SN (Snapshot) , SW (Sweep), and TH (Threshold).

Figure 15. Objects List, example shown. Note that this image has been edited to show
SPM (upper row) and ESpec data (lower row) at the same time.

You can double-click the images in the Objects list to show a bigger image in the preview region of
Vernissage. Alternatively you can drag objects into the preview area or select the respective option from the
context menu shown below.

2. Vernissage Graphical User Interface 21 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Figure 16. Objects List context menu.

The Objects List context menu offers some additional options:

 Switch Parameter Data and Comments windows/tabs on/off

 Open object in preview area

 Sort objects (various columns available)

 Export (this or all selected objects)

 Convert (this or all selected objects)

 Adjust thumbnail size (three fix values or continuous). The original thumbnail size is
"medium"

Sorting

Sorting of the displayed objects can be achieved by

 Specifying sort orders via a dialogue available from the context menu

 Clicking the columns headers. Select subsequent columns with the CRTL key
pressed.

Note, however, that not all columns can be used for sorting.

2. Vernissage Graphical User Interface 22 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Parameter Data

The Parameter Data field shows the most relevant data for a selected object. Tick the Show All box to display
all parameter data available for this data object.

Figure 17. Parameter Data field, example shown.

Comments

Display the comments that were saved with the object. Comments can be saved in the field that pops up upon
starting an experiment and also later on in MATRIX (see MATRIX Application Manual for details). Note that
this field stays empty if no comment was saved upon data acquisition.

Figure 18. Comments field.

Notice
Note that the Objects Table only shows the first of the available comments, i.e. the global
comment if there is one or the first data comment otherwise. If more than one comment is
available this will be indicated with an ellipsis "…"

2. Vernissage Graphical User Interface 23 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Calibration

This field shows the calibration and parameter sets selected in MATRIX (Tools Calibration Selection...).

Figure 19. Calibration field.

Merge Windows

All inner windows that are attached to the outer window frame can be merged and displayed in tabs as shown
in figure 20 below. To do so move one window on top of another until a light blue frame shows that the
window is in catch distance and drop it there. When you move a window around you will probably find other
catch frames also – just select the desired location.

Figure 20. Vernissage GUI with merged windows.

2. Vernissage Graphical User Interface 24 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Filtering

Vernissage provides a powerful filtering machine that allows you to select exactly those data objects you want
out of the host of data files you might have saved "just in case". The most obvious choices are data with a
3-star rating or data from a certain time span.

Figure 21. Filter dialogue window with two options ticked.

The above image shows the filter dialogue. If you select more than one entry you can also select if you want

 Data that match all your given restrictions,

 Data that match some, i.e. at least one but not necessarily all, restrictions or

 Data that match none of the selected conditions.

The latter option is useful for, say, discarding all data from a specific sample and just show the remaining
objects. You can also use the MATRIX comment field and write something like "test_only" while you are still
fiddling around with the settings so you can later filter these objects out with Vernissage.

Notice
For filtering strings like Comment, Data Set or Sample the following rule applies:

 The search string is compared case sensitive if at least one character is given
in upper case.

 The search string is compared case insensitive if all characters are given in
lower case.

Notice
For rated objects you can explicitly include related objects, e.g. objects from repeated
operations, by ticking the respective check box.

2. Vernissage Graphical User Interface 25 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

The following figure shows Vernissage with filtering active. Note that the Objects List, Objects Table and
Result Set Table are updated as soon as you define a restriction, giving you a direct response. The status bar
also shows the filtering result. To return to displaying all objects set Criteria to "unset" or un-tick the respective
boxes. Note that Vernissage will restore the previous settings when you un-tick and then re-tick a box.

Figure 22. Filtering data in Vernissage.

Use the funnel buttons next to the filter name field to generate new filters, either by defining
them from scratch or by duplicating an existing filter and changing the settings. The name for a new or copied
filter can be set directly in the name field.

Figure 23. Filter set-up and selection.

2. Vernissage Graphical User Interface 26 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Preview Area

Figure 24. The Preview area.

When you double-click an object in the Objects List a bigger representation of the data will be shown in the
preview area. If the object comprises several images, as shown in figure 25 below, tabs appear when you
hover the mouse pointer over the object and allow viewing the other images.

Figure 25. Preview area: tabs for accessing other scan directions.

2. Vernissage Graphical User Interface 27 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Notice
In case of curve data, e.g. ESpCurve, SPSCurve und Phase-Amplitude Curve, a double-
click initiates a different action than drag-and-drop:

 Double-click (left): the entire sequence is loaded into the Preview area.

 Drag-and-drop (right): only the dragged frame is loaded to the Preview area.

Notice
In case of SPM Single Point Spectroscopy
and ESpec Multipoint Spectroscopy data a
tool tip shows the exact positions where the
curve was taken.

Use the "Hand" Preview Tool or the little blue arrows to "scroll" horizontally in the preview area. A double-click
on the blue arrows performs a right or left align. Alignment is also available from the context menu.

Figure 26. Alignment options.

2. Vernissage Graphical User Interface 28 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

You can add objects to the preview area by selecting the respective option from the Objects List context menu
or by dragging the image there. If you drag a new object on top of another object already in the preview area,
you have three options:

 Merge. An object can have up to four tabs. If the total number of tabs of the new
plus the old object is less than or equal to four, you can merge the two objects by
adding the new tabs to the old ones.

 Replace. Alternatively you can replace the respective object in the preview area.

 Insert right. Or you can simply add the object to the other preview elements, i.e. to
the right hand side of the actual image.

Figure 27. Preview area tools.

Conversely, you can pull (click and drag) unwanted tabs away from the set, either those you have combined
or those that come as a set originally. This allows you to "undo" a merge operation but may also help to
discard unfinished or otherwise spoilt scans from an otherwise perfect measurement.

A context menu allows further actions, such as aligning and removing images, removing duplicates and
invoking a properties page. Two examples of properties pages are shown in figure 28 below.

Figure 28. Properties pages from the preview context menu, examples shown.

2. Vernissage Graphical User Interface 29 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

On the Properties pages you can make a number of adjustments to the image/curve, the options depending
on the data type involved. For all object types you can enable overlays showing Run/Scan Cycle, Channel
Name, or Axes. The operation positions of SPM Single Point Spectroscopy, Atom Manipulation, and ESpec
Multipoint Spectroscopy can be enabled where applicable.

In case of images you can select the colour scheme and adjust contrast and brightness. For topographic
images the property sheet offers various plane subtraction modes. The advanced plane subtraction mode
applies a least square method, the other modes are the same as in MATRIX.

For ESpec measurement data, which include one or more Peak Background Sets (e.g. SAM, Imaging XPS),
you can select the energy level and the calculation method to be applied to the data.

Further display options allow switching between Kinetic and Binding Energy, Counts and Counts per Second,
Index and Length, Enable Averaging (e.g. repeated SPM Single Point Spectroscopy) or the display of
Logarithmic Values.

Note that the changes to the image are for display purposes only. They are not included in the export process.

Previews of Sequence Objects

For sequence data the preview object represents the entire sequence. Selecting a preview selects all objects
of this sequence in the Objects Table and Objects List. Consequently choosing Export This or Convert This
exports the entire sequence of objects.

In case of phase/amplitude or VolumeCITS data you can separate the curves in the Preview Area via the
Properties page from the context menu.

Figure 29. Properties page of phase/amplitude data.

In Signal over Time und ESP Snapshot Sequence objects you can scroll by moving the mouse with the
middle button pressed

3. Using the Batch Mode 30 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

3. Using the Batch Mode

Besides the graphical user interface, Vernissage also supports a dedicated batch mode. In batch mode, you
specify the operations to be executed by means of command line parameters; Vernissage will run the
specified operations unattended then.

The batch mode is useful for automating MATRIX result file conversion processes; examples for such
automated processes include (but are of course not limited to):

 Scripted pre-processing of MATRIX result files — By means of a dedicated shell
script, you could initially run Vernissage in batch mode in order to convert one or
more result sets into some other format, and then pass the resulting files to a third
party application for further processing.

 Repeated export operations — By combining operating system services and shell
scripts, the Vernissage batch mode could be used for triggering automated
conversion operations e.g. at a specific time or at programmed intervals.

 Running Vernissage from within an application — By utilising operating system
services, you could launch a Vernissage conversion process in batch mode from
within your own application code.

The batch mode interface of Vernissage is provided through a dedicated executable binary called
VernissageCmd.exe, you can find this program in the "Bin" directory of a Vernissage installation

(<InstallDir>\Bin). VernissageCmd.exe must be run from within a shell process, a convenient

way of opening a command shell is to select Programs Omicron NanoScience Vernissage Vx.y
Vernissage Vx.y Command Prompt from the Microsoft Windows "Start" menu.

The command line synopsis of VernissageCmd.exe takes the following form:

 VernissageCmd {-path path-spec | -file file-spec}[...]

 [-exporter plug-in]

 [-outdir dirSpec]

Qualifier Description

–path path-spec Specifies an absolute or relative path to a directory containing MATRIX result files;
Vernissage will load all result sets found in the specified directory.

–file file-spec Specifies a result file or result data file to be loaded.

–exporter plug-in Specifies the name of the exporter plug-in to be used for conversion processes. If this
qualifier is omitted, the exporter plug-in "Flattener" will be used.

–outdir path-spec Specifies an absolute or relative path to a directory in which Vernissage will store the
results of the conversion processes. If this qualifier is omitted, the current working directory
will be used as output directory.

By utilising the qualifiers –path and –file you may specify an arbitrary number of directories and result files to
be processed. After reading all result sets, Vernissage will export the resulting data into an output format
determined by the qualifier –exporter. The output directory to which the selected exporter plug-in will write its
results can be determined by the –outdir qualifier.

3. Using the Batch Mode 31 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Consider the following example:

> VernissageCmd -path "D:\Results\11-Jun-2008" -outdir "D:\Flat Files"

-exporter Flattener

%VERN-I, Loading started

.....................

%VERN-I, Loading stopped

%VERN-I, Export started

.............

%VERN-I, Export finished

>

In the above example, all result sets stored in the directory "D:\Results\11-Jun-2008" will be exported into the
Flat File Format (FFF); the Flattener plug-in will store its results in the directory "D:\Flat Files". During the
reading and conversion processes, the Vernissage software will issue status messages informing you about
the progress of the operations.

The next example shows a more complex batch mode operation: Vernissage is directed to process different
result files from a variety of experiments:

 The complete result set represented by the file "D:\Results\22-Sep-
2008\default_STM-STM_Basic_0001.mtrx"

 All result sets found in the directory "D:\Results\11-Jun-2008"

 A single I(V) spectroscopy curve stored in the file "D:\Results\13-Aug-2008\Gold--
2_1.I(V)_mtrx"

Again, the result file contents will be exported into the Flat File Format (FFF), and the Flattener plug-in will
store its results in the directory "D:\Flat Files".

The example also shows that qualifier names can be abbreviated, hence you can use "–p" or "–f" instead of "–
path" and "–file".

> VernissageCmd -f "D:\Results\22-Sep-2008\default_STM-

STM_Basic_0001.mtrx" -p "D:\Results\11-Jun-2008" -f "D:\Results\13-Aug-

2008\Gold--2_1.I(V)_mtrx" -o "D:\Flat Files" -e Flattener

%VERN-I, Loading started

.....................

%VERN-I, Loading stopped

%VERN-I, Loading started

.....

%VERN-I, Loading stopped

%VERN-I, Loading started

..

%VERN-I, Loading stopped

%VERN-I, Export started

.................

%VERN-I, Export finished

>

3. Using the Batch Mode 32 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

If you run Vernissage in batch mode without specifying any parameters (type VernissageCmd at the shell

command prompt and press the "Return" key), the software will print information about the command line
syntax, as shown in the example below:

> VernissageCmd

Vernissage Version T2.0-2 (v101901)

Copyright (c)2008-2010 by Omicron NanoScience GmbH

Batch processor interface

Synopsis: {-path path-spec | -file file-spec}[...]

 [-exporter plug-in]

 [-outdir path-spec]

>

4. Understanding the Result File System 33 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

4. Understanding the Result File System

If you intend to develop Vernissage plug-in modules, want to link your software against the Vernissage
services, or program a file reader for the Flat File Format, it is essential to be familiar with the way the
MATRIX software organises result data. In this chapter, you will learn about the most important concepts and
terminology related to the MATRIX result data system.

Experiment Result Terminology

To use the Vernissage API functions effectively (or to understand the Flat File Format structure thoroughly),
you need to understand the way MATRIX organises experiment results. In particular, you should be familiar
with the following concepts:

 Bricklet: A Bricklet is a container for all sorts of measurement data. Since a
Bricklet comprises the data of a whole scan cycle, the number of stored curves,
images etc. can be greater than one.

 Result data file: A result data file saves exactly one Bricklet.

 Result file: A result file saves the experiment logbook as well as the links to the
related result data files. It is the master file which must not be lost.

 Result file chain: When a result file is getting too big it will be split into a number
of interlinked result files: the result file chain.

 Result set: A result set comprises all data that have been generated during an
experiment, i.e. all measurement data and the logbook.

This section explains the above terms and discusses the underlying concepts.

The MATRIX software stores all information related to a particular experiment in a result set. A result set is
created when you open an experiment and initialise it by clicking the Initialise experiment button of the
experiment state control element. The result set gets closed when you shutdown an experiment by clicking
the same button again.

While active, a result set will store static and dynamic information about an experiment, including:

 The experiment name, version and structure (i.e. the Experiment Element
instances it consists of) and the initial experiment parameters

 The experiment initialisation date and time and the name of the user account from
which the MATRIX software is run

 Device calibration data, i.e. information on how raw data can be transformed into
physical values

 Experiment state changes, i.e. information about experiment starts, stops, pausing,
etc.

 Parameter changes

 Contents of the Favourites Gallery

4. Understanding the Result File System 34 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

 Acquired data

 Comments, sample names etc.

A result set usually comprises several files, one or more result files (forming a result file chain) and (most
often many) result data files.

While a result data file stores the data acquired through a single data source during a single scan cycle, a
result file contains all other information items listed above. Because this information details the flow of
incidents during experiment execution (e.g. when was an experiment started or stopped, at which time was a
parameter changed to a new value, when and at which sample location was a particular single point
spectroscopy operation initiated, etc.) as well as information on the experiment itself, a result file is also often
referred to as the experiment logbook.

Result files tend to become quite large if an experiment is used for a longer period of time, hence the MATRIX
software will automatically split a large result file into smaller chunks. (By default, a new chunk will be created
when a result file grows larger than 512 Megabytes, however, you may change the size by means of the
Result File Preferences dialogue of the MATRIX software.) Each chunk can be considered as a link in a chain,
thus a result file consisting of several parts is referred to as result file chain while the files which make up such
a chain are called result file chain links (or chain links, for short.).

Result files can easily be identified by their running chain link number, which will be appended to their file
name. For example, the file

default_2008Apr29-104314_STM-STM_Spectroscopy_0001.mtrx

is the first part ("0001") of a result file chain that may consist of several parts. (If there is another link in the
chain, its name would be

default_2008Apr29-104314_STM-STM_Spectroscopy_0002.mtrx

and so forth.)

As already stated above, result data files store the actual raw data acquired through a source. To interpret the
contents of a result data file correctly, additional information is required; this is stored in the associated result
file. Note that it is actually impossible to exploit acquired data in case the result file of the respective
experiment is lost (e.g. has been deleted.)

Result data files are referenced by their associated result file, so the overall file relationships can be depicted
as shown in figure 30 below.

Figure 30. MATRIX result file relationships.

4. Understanding the Result File System 35 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Due to this relationship of the files one must never rename result data files or result files once they have been
created.

The structure of the measurement data stored in a result data file always depends on the axis hierarchy
associated with the data channel through which the data were actually acquired. As a result, a single result
data file may store several data entities. For example, a spatial data channel (such as the SPM topography
channel Z) is associated with the two scan axes Y and X and thus delivers raw data values that can be
expressed as Z(y, x). As each result data file will store data resulting from a complete acquisition cycle, the
amount and structure of data stored in a file actually depends on what complete acquisition cycle means for a
particular axis configuration. For instance, if the X-axis has been configured to acquire data on the forward
part of a scan sweep only and the Y-axis has been set to scan upwards only mode, then the acquisition cycle
is complete as soon as the Y-axis has reached its maximum position and the X-axis has completed its forward
sweep. Thus, the result data file will store raw Z(y, x) data representing a single image. If, however, the X-axis
has been configured to acquire data on the forward and backward part of a scan sweep and the Y-axis has
been set to scan upwards/downwards mode, a Z(y, x) result data file will actually contain four images
(forward/up, backward/up, forward/down and backward/down), as the acquisition cycle is complete when both
Y– and X-axis have returned to the scan origin.

The block of data stored in a result data file is referred to as Bricklet. A Bricklet can consist of any number of
n-dimensional data entities such as one curve (e.g. from a single point spectroscopy operation), several
curves (e.g. from a volume CITS operation), an image, several images, etc.

When accessing result data by means of the Vernissage API, you will always get data Bricklet by Bricklet. For
each Bricklet retrieved, you can inquire additional information such as the experiment and axes parameters
effective when the Bricklet was stored, the structure and dimensions of the Bricklet data, the raw value-to-
physical value transformation rule, the physical unit of the data and much more. In addition, you can query the
Bricklet itself in order to retrieve the comprised data entities one after another.

Summary
 Each result data file stores an n-dimensional data structure called a Bricklet.

 This data structure has been delivered by a particular data source during exactly one
data acquisition cycle.

 Result data files are associated with a result file chain consisting of one or more result
files.

 Result files store information about the experiment and the experiment execution and
are thus also often referred to as the experiment logbook.

 The files of the result file chain and all associated result data files are subsumed under
the term result set.

4. Understanding the Result File System 36 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

How Vernissage Processes Result Sets

The Vernissage approach to managing result sets generated by the MATRIX system is based on two
subsequent steps. Initially, the software will process one or more results sets by analysing the respective
result file chains and result data files. During this phase, Vernissage will create an internal database storing all
information a plug-in module (or a third party application) requires for using the result set contents. Note
however, that the raw data acquired during the various experiment runs will not be loaded, which allows
Vernissage to handle a large number of result sets simultaneously without exhausting the computer memory.

When using the graphical user interface of Vernissage, you initiate this first phase of result set processing by
selecting result files or result data files. When utilising the Vernissage API, you will call dedicated functions for
analysing result sets and creating the information database.

During the second step, a plug-in module (or a third party application) will access the Vernissage result set
database and use the information from the database for processing Bricklets. At some stage in this process,
the respective software must also load the raw data contained by a Bricklet, but it can do this "on demand".
("On demand" basically means that a software module will load the raw data contents of a Bricklet just when it
needs to process it and unload the data again once it does not need to access it any longer.)

For loading and unloading Bricklet contents, the Vernissage API offers dedicated functions that allow handling
raw data efficiently. See section Accessing Raw Data for more information on these functions.

Understanding MATRIX Experiments

To become familiar with the Vernissage services, you need some basic understanding of how the MATRIX
system organises experiments.

The MATRIX system does not provide any hard-coded experiment control functions but implements a
framework for executing experiment descriptions. Each experiment description is actually a blueprint of
actions and operations a particular experiment should offer, including all parameters and even the graphical
user interface.

Experiment is a term you will encounter frequently while using the MATRIX software (during a MATRIX
session, you will open, upload, start, stop, etc. experiments). Another important concept of the MATRIX
system is usually less visible: Experiments are actually constructed from distinct building blocks called
Experiment Elements.

An Experiment Element is a small software module dedicated to a particular purpose such as generating scan
movements, controlling the tip/sample distance, acquiring data and other. Examples for Experiment Elements
are:

 XYScanner — An Experiment Element dedicated to controlling and generating
scan sweeps.

 Spectroscopy — Experiment Elements of this type support spectroscopy
operations by generating and controlling spectroscopy ramps.

 Channel — Experiment Elements of type Channel are able to acquire data by
means of a sensor device, i.e. an Analogue-to-Digital Converter (ADC) component.

 GapVoltage — An Experiment Element for configuring the gap voltage applied
between probe and surface.

4. Understanding the Result File System 37 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Experiments are constructed by deploying instances of Experiment Elements; deployment takes place by
specifying the Experiment Element type of a particular instance, assigning a unique name to the instance and
configuring a set of parameters (called deployment parameters) for the instance. (See the experiment
structure description files — such as STM_Spectroscopy.exps — for examples on experiment

construction by deploying Experiment Element instances.)

Each experiment can use multiple instances of the same Experiment Element type and this happens quite
frequently. For example, each of the MATRIX standard SPM experiments offer several data acquisition
channels, each of which is actually an Experiment Element instance. Consider the well-known MATRIX
standard experiment STM_Spectroscopy: this experiment consists of more than 25 Experiment Element
instances of several different types. Not surprising, the element type occurring most often is Channel
(14 instances).

Experiments can consist of virtually any number of Experiment Element instances, however, only very
complex experiments consist of more than three dozen Experiment Element instances.

Any experiment parameter you can modify while using an experiment actually belongs to a particular
Experiment Element instance. SPM scan parameters such as scan area dimensions, scan mode, raster time
and others belong to element instances of type XYScanner, the oversampling control parameters are part of
the parameter set of Experiment Element instances of type Channel, etc. When developing Vernissage plug-
in modules you may sometimes want to retrieve the value of an Experiment Element parameter, although
most information required to interpret result data can also be inquired by other means. For retrieving the value
of a parameter at a particular time you must know the instance name of the Experiment Element hosting the
respective parameter and the parameter name itself. A good starting point for exploring the parameters
supported by a particular Experiment Element is the onscreen help facility of the MATE script manager
available through the "Tools" menu of the MATRIX experiment window. The "Catalogues" topic of the
onscreen help provides information on available Experiment Elements, their purpose, characteristics,
properties, and other information.

Data Types and Formats

Data delivered by the Vernissage services takes one of two forms:

 A raw data item is an unprocessed 32-bit value as delivered by the MATRIX
hardware.

 A physical value is a data item representing a physical quantity. In contrast to raw
data, physical data are associated with a unit such as volt or newton.

Physical values can be transformed into raw values and vice versa and this is often a task Vernissage plug-in
modules have to accomplish.

Technically, any raw value is represented as a signed long integer data item, while physical values take the
form of a 64-bit double-precision floating point figure. Please note, however, that Vernissage will pass
Experiment Element parameter values (which often represent physical quantities) as character strings with
associated unit information (see below also).

Within the MATRIX system, all physical quantities have SI compatible units; consequently, any parameter
value is associated with a unit such as ampere, newton, metre, second, etc. For example, a scan area width
of 500 nm will be represented as 5∙10–7 m.

4. Understanding the Result File System 38 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

The following table summarises the most important physical quantities and their units as used by the MATRIX
system.

Physical Quantity Unit (long form) Unit (short form)

length Meter m

velocity Meter/Second m/s

duration Second s

frequency Hertz Hz

current Ampere A

voltage Volt V

electron volt ElectronVolt eV

force Newton N

angle Degree deg

Counts Counts cts

Decibel Decibel dB

Percentage Percent %

Temperature Kelvin K

Table 3. Important physical quantities and their unit representations in MATRIX.

Please note that the Vernissage API will return the character string "--" when the physical unit of a data item is
not known. (If this happens, the respective data item is most often not a physical quantity but represents some
other piece of information, such as a Boolean value.)

The MATRIX software — and thus also the Vernissage modules — utilises the Unicode system for
representing character sequences (also referred to as strings) internally. Each character of a string is
represented by the UTF-16 encoding and will usually be stored in a single 16-bit word. (For Unicode experts:
strings requiring surrogate pairs are currently not found in MATRIX, hence you can also consider all
characters as being UCS-2 encoded.)

For C++ software, the use of Unicode throughout the MATRIX system has some consequences:

 The string class for storing character sequences returned by Vernissage is
std::wstring (instead of std::string)

 The array representation of a character sequence is wchar_t[]or wchar_t*

(compared to char[] and char* for ANSI/ASCII-encoded character sequences)

 For writing Unicode character sequences to files (or an output device), one must
utilise library functions such as fwprintf (or the wide-character stream class

std::wostream) instead of fprintf (or std::ostream, respectively)

The Vernissage API will pass parameters by means of a value type/value/unit sequence, with the value
expressed as a (Unicode) character string. For example, inquiring the value of parameter Width of the
Experiment Element XYScanner (describing the width of the current scan area) could result in the following
information:

value type = vt_Double

4. Understanding the Result File System 39 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

unit = "Meter"

value = "5e-7"

The above information describes the value of parameter Width by means of three separate attributes:

 A type code (vt_Double) specifying the data type of the parameter value (in this

example: double-precision floating point figure)

 A character string denoting the SI unit used

 A character string describing the (numerical) parameter value

Parameters representing non-numerical data will be treated identically; for example, the current value of
parameter X_Retrace (Experiment Element XYScanner) representing the scan mode in X-direction could be
represented as shown below:

value type = vt_Boolean

unit = "--"

value = "true"

The above information indicates that the value of parameter X_Retrace is of type Boolean (i.e. a flag) and has
been set to true — The experiment has thus been configured to acquire data on the retrace (or backward) part
of the scan sweep.

The parameter value types and type codes used by Vernissage are listed in the table below.

Value type Type code ID Type code value Example value string

Boolean vt_Boolean 3 true

Enumeration vt_Enum 4 1*

Double-precision floating point vt_Double 2 5e-7

32-Bit integer vt_Integer 1 -42

Unicode character string vt_String 5 Hello

Table 4. Parameter value types and type codes used by Vernissage. *) An
enumeration value is always expressed by its associated numerical constant
(although such a value has also a character string representation.)

Understanding Data Views

Data Views (or short Views) play an important role in the MATRIX system, as the type and configuration of a
View determines how acquired data gets visualised when running experiments.

Actually, every display that is used for visualisation of acquired data at run-time of the MATRIX software must
be associated with a specific View that processes the raw data in a way that enables the display to render the
data correctly.

However, Views can also be of interest when analysing Bricklets, as the type of a View associated with a
Bricklet (more precisely, with the data channel a particular Bricklet originated from) can be helpful for
determining the interpretation of the data stored by a Bricklet from an application perspective. For example, if
a Bricklet stores one-dimensional data, it actually stores a curve. However, it is not really clear if the curve

4. Understanding the Result File System 40 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

represents (for example) the results of a single point spectroscopy operation, or has been generated during a
force/distance curve acquisition experiment, etc. In this case, knowing which Views were associated with the
Bricklet at experiment run-time can be essential: If there were Views of type ForceCurve connected to the
channel that has produced a particular Bricklet, the one-dimensional data represent a force/distance curve
beyond doubt. However, Views of type Spectroscopy clearly hint at single point spectroscopy data.

View types commonly found are:

View Type Code Bricklet Dimensions Usage

vtc_DiscreteEnergyMap 2/3 Electron spectroscopy curves from a series of acquisition
operations using discrete energy maps.

vtc_ESpImageMap 3/4 Electron spectroscopy image data from a series of
acquisition operations using discrete energy maps.

vtc_CurveSet 2 Curve data used for electron spectroscopy curves acquired
by operations on energy regions.

vtc_ParameterisedCurveSet 3 Curve data used for electron spectroscopy curves acquired
by “snapshot” operations.

vtc_ContinuousCurve 1 Curve data continuously acquired over time.

vtc_PhaseAmplitudeCurve 1 Associated phase and amplitude curves.

vtc_1DProfile 1 Curve data acquired over time while moving probe along
some path. (Used e.g. for curve data acquired during by
atom manipulation operations.)

vtc_ForwardBackward2D 2 Topography images, current images and similar 2D data.

vtc_2Dof3D 3 Planes from a volume CITS data cube.

vtc_Spectroscopy 1/3 Spectroscopy curves (SPS, or volume CITS).

vtc_ForceCurve 1 Force/distance curves.

vtc_Interferometer 1 Interferometer adjustment curves (Omicron Cryogenic SFM
instrument only.)

vtc_Downward2D 2 ESp - SEM images by generic scanner

Axes and Axis Hierarchies

The data acquisition model of MATRIX is based on the idea of triggered channels: A channel acquires data by
means of its associated sensor device or acquisition hardware every time it is triggered. The entity that can
trigger a channel is referred to as axis; an axis has a start value, an end value and a number of equidistantly
distributed clocks between the start and end values (the start and end values are also considered to be
clocks). When an axis is started, it proceeds from start to end value, generating a trigger at each clock. (The
time it takes the axis to reach the next clock is known as the raster time.)

4. Understanding the Result File System 41 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Figure 31. Axis and triggered channel

For a data acquisition operation producing one-dimensional data (i.e. a curve) a single axis is all that is
actually required. (Consider a single point spectroscopy operation proceeding from the ramp start value to the
ramp end value at a certain raster time.) For generating two-dimensional images, two "nested" axes are
required, as shown in the following figure.

Figure 32. Axis hierarchy.

The two axes Y and X form an axis hierarchy because axis Y does not trigger a channel directly but another
axis (X), which will finally trigger the data acquisition. When started, the X-axis in the axis system shown
above will proceed from its start value to its end value each time the Y-axis triggers it at one of its clock
positions. In the above example, axis X is the trigger axis of the channel (while Y is the trigger axis of X).
Because Y is not associated with a trigger axis itself, it is called the root axis of the axis hierarchy.

Axis hierarchies can become quite complex, as the MATRIX system does not limit the number of nested axes.
However, the standard experiments shipped as part of the MATRIX kit use a maximum of four nested axes.

Each axis of an axis hierarchy has a name that can be either viewed as plain or qualified. Plain names are
simple character strings (such as "X", "V" or "Energy") that are most often sufficient as in the context of a
particular experiment a specific axis name is usually unique. Qualified axis names contain additional
information about the associated instrument and the Experiment Element instance and take the following
form:

Instrument Name::Element Instance Name::Plain Name

For example:
Default::XYScanner::X

Gemini::GeminiScanner::Y

4. Understanding the Result File System 42 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Internally, all axis names are qualified names; however, the service routines of the Vernissage API can
process plain names as well.

An axis is referred to as mirrored if it does not only proceed from the configured start value to the end value,
but then also back to the start value (which effectively doubles the number of clocks it uses). The mirrored
characteristic is, for example, assigned to the scan axes X and Y (supported by the Experiment Element
XYScanner) if these axes have been configured to use a forward/backward or up/down mode of operation.

By default, an axis will trigger another axis or a channel at each clock position, but this behaviour can be
altered by applying filters called table sets. A table set specifies a set of intervals on an axis for which triggers
are generated; each interval specification consists of a start value, an end value and an increment. Consider
the following examples:

 The interval (start = 1; stop = 300; step = 1) applied to an axis with a "length" of
300 clocks would generate a trigger at each clock position.

 The interval (start = 1; stop = 300; step = 5) applied to an axis with a "length" of
300 clocks will generate a trigger at clock positions 1, 6, 11, etc.

 The interval (start = 151; stop = 300; step = 2) applied to an axis with a "length" of
300 clocks will suppress all trigger for the first 150 clock positions and generate
triggers at every second clock position on the second half of the axis.

The most prominent use of table sets is grid spectroscopy (SPM volume CITS): The spectroscopy sub-grid is
actually established by applying appropriate table sets to the scan raster (i.e. the Y- and X-axes). Consider
the axis hierarchy shown in figure 32 on page 41: assuming that both axes have been configured to be 300
clocks long, the following table sets would establish a X = 10, Y = 5 sub-grid:

 Y-axis: (start = 1; stop = 296; step = 5)

 X-axis: (start = 1; stop = 291; step = 10)

If the Y- and X-axis are mirrored (resulting in 600 clocks effectively), the table sets must be configured as
follows:

 Y-axis table set: (start = 1; stop = 296; step = 5) and (start = 305; stop = 600; step
= 5)

 X-axis table set: (start = 1; stop = 291; step = 10) and (start = 310; stop = 600; step
= 10)

The Vernissage API offers a number of service routines allowing to obtain information on the axes involved
into the acquisition of data contained by a particular Bricklet.

Axis Parameters

Axes can be associated with meta information, i.e. information being logically related to the respective axis
although it does not affect the axis configuration—such as start value, end value, number of clocks, etc.—
directly. Meta information is provided by means of dedicated name/value tuples known as axis parameters;
whether axis parameters are associated with a particular axis (and, if so, what types of parameters) actually
depends on the axis type:

 Axes used by SPM experiments (such as X, Y, Z, VGap etc.) have currently no
associated meta information and thus not provide axis parameters.

4. Understanding the Result File System 43 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

 Experiments from the electron spectroscopy domain make frequent use of meta
information; the respective parameter sets include (but is not limited to):

 Dwell time

 Dispersion and normalisation factors

 CAE/CRR mode and value

 Transition label

 Peak and background energy configuration of discrete energy maps

 Centre energy and inter-acquisition delay of snapshot-mode data
acquisition operations

 Length of the scan vector of a line-oriented spectroscopy operation

 Divide-by-ten-mode state of the power supply unit

The Vernissage user interface will display axis parameters just like other experiment parameters in the
Parameter Data view. Users who want to develop exporter plug-in modules for electron spectroscopy data will
call dedicated application programming interface routines (in this case getAxisParameter() or

getAxisParameters(), respectively) in order to obtain information on one or more axis parameters,

including the parameter values and physical units.

Related Bricklets

Certain type of Bricklets can be associated with other Bricklets due to some logical interdependency; such
Bricklets are referred to as related Bricklets. Currently, the Vernissage software recognises the following
related Bricklets types.

Depends-on/References Relationship

A particular Bricklet references another Bricklet; the referenced Bricklet is considered to "depend" on the
referencing Bricklet. This type of Bricklet relationship affects the following experiment data:

 Single point spectroscopy curves depend on SPM images, as they have been
acquired at a certain location.

 Atom manipulation curves depend on SPM images, as the data they consist of
have been acquired along a vector between a particular start location and an end
location.

 Spectroscopy curves also depend on SPM images if they have been acquired
along a vector.

 Electron spectroscopy curves depend on SAM or XPS images if they have been
acquired at a defined sample location.

 Discrete energy maps depend on SAM or XPS images if they have been acquired
at a defined sample location.

4. Understanding the Result File System 44 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Figure 33. Relationship between a single point spectroscopy curve Bricklet and a
topography image Bricklet

Successor/Predecessor Relationship

An operation has produced a sequence of consecutive Bricklets, or a series of Bricklets logically connected.
This type of Bricklet relationship affects the following experiment data:

 Phase/amplitude curves consist of a Bricklet containing phase data and a second
Bricklet storing the associated amplitude data.

 Single point spectroscopy curves generated with the automatic spectroscopy
operation repetition option enabled.

 Electron spectroscopy curves generated with the region repetition option enabled.

 Continuously acquired curves consisting of several consecutive Bricklets.

 Electron spectroscopy detector snapshots consisting of several consecutive
Bricklets.

Notice
Please note that a single Bricklet can have both a Depends-on/References and a
Successor/Predecessor relationship with other Bricklets.

Raw Data Organisation

Raw data delivered by Vernissage consists of a series of 32-bit signed integer values stored in the order they
were originally acquired by the MATRIX system. Thus, in order to identify and interpret the data items
contained by a Bricklet, one must know their acquisition order.

The MATRIX system acquires data with respect to the axis hierarchy associated with a specific data channel.
For a channel associated with a single axis, the data organisation is straightforward: the axis proceeds
forwards from its start value to the end value, acquiring a data item at each clock position. If the axis has the

4. Understanding the Result File System 45 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

mirrored characteristic, the axis will also return backwards to its start value, again acquiring a data item at
each clock position. The data organisation in the resulting Bricklet is shown in figure 34 below.

1 2 3 4 5 5 4 3 2 1

Forward Backward

Figure 34. Data order generated by single mirrored axis.

In the scenario depicted in figure 32 on page 41, the Y-axis triggers the X-axis, so the associated channel will
deliver data items line by line, with each line proceeding from the start value of the X-axis to its end value. If
both the X– and the Y-axis have been assigned the mirrored characteristic, the resulting Bricklet data
organisation will look as depicted in figure 35 below.

1 2 3 4 5 5 4 3 2 1 1 2 3 4 5 5 4 3 2 1 ...

Line 1

"forward/up"

Line 1

"backward/up"

Line 2

"forward/up"

1 2 3 4 5 5 4 3 2 1 1 2 3 4 5 5 4 3 2 1

Line 5

"forward/up"

Line 5

"backward/up"

Line 5

"forward/down"

Line 5

"backward/

down"

...

Figure 35. Data order generated by simple mirrored axis hierarchy

Bricklets resulting from an SPM spatial scan process (e.g. Bricklets containing topography images) will be
structured exactly as shown above if the scan subsystem was configured to use the forward/backward and
up/down scan modes.

More complex axis hierarchies will cause similar data structures, as the channel through which data are
acquired gets triggered by the lowest axis within the hierarchy. For example, consider the following data
structure:

1 2 3 4 5 54321 1 2 3 4 5 54321 ...

Curve 1

Line 1

"forward/up"

Curve 2

Line 1

"forward/up"

Curve 3

Line 1

"forward/up"

Curve 1

Line 1

"backward/up"

Figure 36. Data order generated by Y-X-V hierarchy (Volume CITS)

The above data structure may result from a three-axis-hierarchy as typically used by volume CITS
experiments. As the channel will be triggered by the spectroscopy axis (which is triggered by the X-axis), the
Bricklet will store the acquired spectroscopy data curve-by-curve and line-by-line.

It is important to notice that Bricklets only store acquired data, i.e. any time an axis is not triggered (because
of some filter applied through a table set) there will be also no change of the Bricklet data structure.

Please see Appendix: Raw Data Structures for details on all Bricklet raw data structures supported by
Vernissage.

5. The Vernissage Programming Interface 46 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

5. The Vernissage Programming Interface

The Vernissage software offers a dedicated Application Programming Interface (API) for integrating with third
party software. Basically, you may use this API in two different ways:

 By linking the Vernissage software against your own application code, you gain
access to the result file load and data access mechanisms of Vernissage. You may
call API functions to load result data files or entire result data sets and for
accessing the contents of result files.

 By developing a Vernissage plug-in, you may extend the capabilities of the
Vernissage software. In this case, the API functions will help you to traverse result
data structures, to obtain information about result data and to convert acquired
measurement results into other data formats.

This chapter discusses both aspects of the Vernissage API; you will learn how to access the Vernissage
facilities from within your own application code and how to develop a Vernissage exporter plug-in.

Accessing Vernissage Facilities from Your Application Code

If you want to process the contents of MATRIX result files by means of your own application software you can
take two different approaches. Basically, you may use Vernissage to convert one or more result files into
some other output format and process the resulting files afterwards. (By utilising the Vernissage command
line interface this can be even done in an automated way.) The more elegant solution, however, is to utilise
the Vernissage facilities for reading and accessing result file contents directly from within your application
code.

Omicron grants you the right to link your own software against the Vernissage core libraries (or load these
libraries at run-time) so that you can call Vernissage API functions just like a plug-in module would do. (Note
however, that you must neither redistribute parts of the Vernissage binaries, nor the complete product kit with
your own software.) In this way, you can integrate the Vernissage software facilities for reading result files and
accessing their contents with your own application code.

As already stated, using Vernissage facilities from third party application code is very similar to using
Vernissage services from a plug-in module, with the following exceptions:

1. Your application must first gain access to the Vernissage core software libraries before you can
use the service API.

2. Your application must create an instance of the API interface object (an instance of the
Vernissage class Session) in order to call API functions.

3. Your application must use the Vernissage API to load (and unload) result sets and data files
itself.

The subsequent sections discuss the above topics only; for an overview of the Vernissage result file contents
access services, see chapter Building Exporter Plug-Ins.

5. The Vernissage Programming Interface 47 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Getting Access to the Vernissage Core Libraries and Session Object

In order to access Vernissage services, your application software must utilise the Vernissage Dynamic Link
Library Foundation.dll. The DLL is located in the installation directory of the Vernissage system and

you may take one of two approaches for integrating it with your application software.

 Link your application against the object library Foundation.lib; the Microsoft

Windows image loader software will then automatically load the required DLLs at
application run-time.

The main disadvantage of this approach is that the Vernissage binaries have to reside in the same directory
as your application binaries. Note that the library file Foundation.lib ships with the Vernissage Software

Development Kit (SDK) which you must install first. The SDK comes as a ZIP archive and can be downloaded
from the following website: http://www.omicron.de/en/software-downloads (topic "Vernissage", sub-topic
"Development Kit")

 Load Foundation.dll and its associated libraries dynamically at run-time of

your application. This is the preferred method, as the binaries of your application
and the Vernissage system can be separated easily.

The disadvantage of loading Foundation.dll dynamically is that you must locate the library files first.

You may of course use a hard-coded file-specification in your application code, however, the recommended
approach is described below:

1. Look up the Microsoft Windows registry to obtain the following value:

HKEY_LOCAL_MACHINE\Software\Omicron NanoScience\Vernissage\Vx.y\Main\InstallDirectory

2. Append the subdirectory name "Bin" to the path specification retrieved through the
above value.

3. Append the DLL file name to the path specification. The resulting file specification
will be similar to the following:

<InstallDirectory>\Bin\Foundation.dll

4. Load the DLL, e.g. by calling the Microsoft Windows API functions
LoadLibrary() or LoadLibraryW().

5. Repeat steps 2 to 4 for all required library files.

6. Find the entry points of the two Vernissage API functions getSession() and

releaseSession(), e.g. by calling the Microsoft Windows API function

GetProcAddress().

Afterwards, you can call the getSession() function to retrieve an interface object of class Session

which is required for utilising the services of the Vernissage API.

A C++ example routine for gaining access to the Vernissage API is shown below; the routine requires the path
specification to the Vernissage "Bin" directory to be passed and returns the Session object representing the
Vernissage API.

5. The Vernissage Programming Interface 48 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Vernissage::Session* getSessionObject (LPCWSTR pDllDirectory)

{

 // List of DLL files to be loaded

 LPWSTR pDllNames[] = { L"Ace.dll",

 L"Platform.dll",

 L"Base.dll",

 L"Xerces.dll",

 L"Store_XML.dll",

 L"Store_ResultWriter.dll",

 L"Store_Vernissage.dll",

 L"Foundation.dll",

 NULL

 };

 LPWSTR *pT = pDllNames;

 HMODULE module;

 // Load all DLLs

 do

 {

 if (*pT != NULL)

 {

 // Construct the file specification

 size_t length = wcslen(pDllDirectory) + wcslen(*pT) + 2;

 LPWSTR pFileSpec = new WCHAR[length];

 wcscpy(pFileSpec,pDllDirectory);

 wcscat(pFileSpec,L"\\");

 wcscat(pFileSpec,*pT);

 // Load the DLL

 module = LoadLibraryW(pFileSpec);

 delete[] pFileSpec;

 pT++;

 }

 } while ((*pT != NULL) && (module != 0));

 if (module != 0)

 {

 // Last DLL loaded was ‘Foundation.dll’, so we can get the

 // addresses of the ‘getSession()’ and ‘releaseSession()’

 // routines now.

 typedef Vernissage::Session * (*GetSessionFunc) ();

 typedef void (*ReleaseSessionFunc) ();

 GetSessionFunc pGetSession;

 pGetSession = (GetSessionFunc)GetProcAddress(module,

 "getSession");

 Vernissage::Session *pSession = (pGetSession)();

 }

 // This routine is just an example, it’s pretty stupid because it

 // drops the address of ‘releaseSession’ which is required at

 // application shutdown ...

 return pSession;

}

The header file Vernissage.h used in the above code fragment contains the declarations of all data items

and API functions required for using the Vernissage services; this file is part of the Vernissage SDK. For more
information on the Vernissage SDK please refer to section Building Exporter Plug-Ins.

5. The Vernissage Programming Interface 49 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Loading and Unloading Result Files

As explained earlier, the Vernissage approach to result set processing comprises two distinct steps:

 Analyse one or more result sets and create an internal database storing information
about the contents of these result sets.

 Use the database for processing the Bricklets contained by the result sets; load
and unload the raw data content of a Bricklet dynamically during this process.

Both of the above steps are supported by the Vernissage API which offers various functions for managing
MATRIX result sets:

 There is a set of functions dedicated to loading one or more result files, or one or
more result data files. (There is also a function for loading all files contained by a
particular directory.) These functions will analyse the respective files and create the
information database.

 A different set of functions supports loading and unloading the raw data of the
Bricklets associated with the result files loaded.

The following table lists all API routines dedicated to the management of result files and raw data.

Routine Description

loadResultSet Loads one or more result files (or result data files) into the information database.

loadAllResultSets Loads all result sets from a specific directory into the information database.

eraseResultSets Erases all result sets from the information database.

loadBrickletContents Loads the raw data content of a particular Bricklet.

unloadBrickletContents Marks the raw data content of a particular Bricklet for unloading and unloads the
data if no other software module still uses it.

Table 5. Result file and data management routines.

Building Exporter Plug-Ins

For building your own Vernissage plug-ins, you will need a C++ development environment. Omicron
recommends using Microsoft Visual Studio 2005 for this purpose, as the Vernissage tool itself has been
developed using this software. If you don’t have access to a Microsoft Visual Studio 2005 installation (or its
variant Microsoft Visual C++ 2005 Express Edition), you can download the successor version Microsoft
Visual C++ 2008 Express Edition free of charge from the following website:
http://www.microsoft.com/express/Downloads/#Visual_Studio_2008_Express_Downloads.

Plug-in developers must, however, be aware that this edition of the Microsoft C++ environment produces
binary code that is not compatible with previous versions; plug-ins compiled with Microsoft Visual C++ 2008
Express Edition (or its commercial counterpart Visual C++ 2008) will cause Vernissage to terminate abruptly
when used for data export operations. To remedy the situation, Omicron offers two different versions of the
Vernissage Kit and the Vernissage Software Development Kit (SDK):

5. The Vernissage Programming Interface 50 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Kit Name Environment Plug-In Development SDK Compiler

Vernissage_V2.2.zip Microsoft Visual C++ 2005 VernissageSDK_V2.2.zip VC8

Vernissage_V2.2_VC9.zip Microsoft Visual C++ 2008 VernissageSDK_V2.2_VC9.zip VC9

If you do not intend to develop your own plug-in modules, the type of Vernissage kit you install does actually
not matter. Omicron recommends installing the "Vernissage_V2.2.zip" kit in this case.

If you download the binary code of a plug-in module from the Omicron website, make sure that you select the
version that is compatible with the Vernissage kit you have installed. To determine the correct plug-in type,
choose "About" from the "Help" menu of Vernissage. The type of development environment that must have
been used for compiling plug-in modules is indicated by the "Plug-in compiler" version information text. (For
example, "Plug-in compiler: VC8 (VS 2005)" for the VC8 compiler shipped with Microsoft Visual C++ 2005.)

Please note that the versions 2010 and 2012 of Microsoft Visual Studio (as well as their respective "Express"
counterparts) can currently not be used for developing Vernissage plug-in modules.

Before you can start to develop a plug-in module, you must install the Vernissage Software Development Kit
(SDK) on a computer running Microsoft Windows. The SDK comes as a ZIP archive and can be downloaded
from the following website: http://www.omicron.de/en/software-downloads (topic "Vernissage", sub-topic
"Development Kit")

After unpacking the archive to an arbitrary location, you have all the files and tools required for developing
new plug-in modules, or modifying existing plug-in source code, or integrating the Vernissage core software
with your own applications.

The directory tree of the Vernissage SDK has the following structure:

Vernissage SDK Main directory

 Incl C++ header files

 Debug Debug version of Foundation.lib

 Release Release version of Foundation.lib

 PlugIns Plug-in development directory

 ASCIIExporter Example plug-in: ASCII Exporter

 SCALAPROFormatter Example plug-in: SCALA PRO Formatter

The PlugIns directory contains two example Exporters: The ASCIIExporter converts MATRIX result

sets into simple ASCII files, while the SCALAPROFormatter generates Omicron SCALA PRO-compatible

data files from MATRIX result sets. The ASCII exporter is an example for a straightforward plug-in, while the
SCALA PRO exporter demonstrates how a very complex export task can be accomplished. Both examples
are provided as complete C++ projects: the respective directories contain all required files, including C++
source code, Microsoft Visual Studio "project" and "solution" files, etc.

Notice
You can download binary versions of the ASCII exporter and SCALA PRO formatter plug-ins
from the Omicron MATRIX website http://www.omicron.de/en/software-downloads (topic
"Vernissage", sub-topic "Plug-In Examples")

5. The Vernissage Programming Interface 51 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

After compiling and linking the plug-in DLL, you must manually copy the resulting file to the Vernissage plug-in
directory. The plug-in directory is usually located at:

<InstallDir>\PlugIns

Caution
 You must compile all plug-in code as release build not as debug build version.

 Never copy a plug-in DLL that has been compiled and linked as debug build into the
Vernissage plug-ins directory!

Debug build code uses a different heap memory manager than release build code,
therefore debug build DLLs are structurally incompatible with Vernissage and will most
probably cause the software to crash during its start-up phase.

Anatomy of an Exporter Plug-In

A Vernissage plug-in module must be provided as a multi-threading-capable Microsoft Windows Dynamic Link
Library (DLL) compiled and linked as release build. (Note that a plug-in DLL must not be provided as debug
build as such DLLs will most probably cause the Vernissage software to crash during its start-up phase.)

As an absolute minimum, the DLL must contain a single C++ class derived from the Vernissage base class
PlugInBase; this base class specifies a few simple methods that your derived plug-in class must

implement.

The below listing shows the contents of a C++ header file declaring the interface of a class that Vernissage
would recognise as a valid plug-in:

#include "..\Incl\PlugIn.h"

namespace PlugIn

{

 class MyPlugIn : virtual public PlugInBase

 {

 public:

 MyPlugIn ();

 ~MyPlugIn ();

 // Plug-in identification

 void getIdentity (std::wstring& name, std::wstring& version,

 std::wstring& producer) const;

 PlugInType getType () const;

 // Init and shutdown

 void init ();

 void shutdown ();

 // Plug-in main function point of entry

 bool run (Vernissage::Session *pSession,

 std::wstring outputDirectoryPath,

 void *pFilterSet);

 // Cancel operation

 void stop ();

 };

}

The most important elements of the class declaration are discussed below:

5. The Vernissage Programming Interface 52 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

 The interface class PlugInBase is declared in the Vernissage header file PlugIn.h which must hence

be included into the Plug-In code. You can find the header file in the "Incl" source code directory of the
Vernissage SDK.

 All Vernissage plug-in code must be placed in the namespace PlugIn.

 A Vernissage plug-in class must be derived from the base class PlugInBase.

 The Vernissage core software will call this method when loading the plug-in DLL in order to obtain
information about the identity of a plug-in module. The method implementation should fill in useful
information into the following variables passed as arguments:

 name — The name of the plug-in module (e.g. "ASCII Exporter", "SCALA PRO Formatter", etc.) Note

that the name must be unique for all plug-in modules, i.e. two plug-in modules returning the same
name cannot co-exist in the same Vernissage environment. (If the same name is returned by more
than one plug-in module, the Vernissage software will only load one of them and mark all other
modules using the same name as invalid. By choosing About Plug-Ins on the Help menu of the
Vernissage main window you can direct the software to display a list of all plug-in modules that were
successfully loaded.)

 version — An arbitrary character string denoting the software version of the plug-in module, e.g.

"V1.0".

 producer — A character string denoting the plug-in producer, e.g. "Omicron NanoScience GmbH".

 The Vernissage core software will call this method when loading the plug-in DLL in order to determine the
type of plug-in. As the only plug-in type currently supported is Exporter (a plug-in dedicated to exporting
MATRIX result data into some other format), this method must return the type code constant
PlugInBase::PlugInType::pit_Exporter.

 The Vernissage core software will call special methods after it has completed loading a plug-in module
(routine init()) and when it is about to shut down (routine shutdown()). You may use these routines

if your plug-in module requires dedicated initialisation or shutdown procedures; if this is not the case, you
may provide empty implementations for either of the methods.

 The Vernissage core software will call this method each time the plug-in module should execute, i.e. when
the user has selected the plug-in and initiated an export operation. The method arguments are:

 pSession — A pointer to an interface object that allows your plug-in code to access the Vernissage

programming interface.

 outputDirectoryPath — A character string specifying the path specification of the output

directory the user has chosen as target directory for the export operation.

 pFilterSet — An opaque pointer to a filter set object. This object describes the data the user has

designated for conversion and can be used to restrict an export operation.

Note that the run() method may only return after it has finished its task (i.e. completed an export

operation); there are no constraints on the time a run() method executes in order to complete its job.

The run() method returns a Boolean flag indicating the completion status of the operation: the value true

indicates that the export operation was completed successfully, while false signals an error condition, i.e.
the export operation was terminated due to some problem. (See the description of the message
management support routines below in order to learn more about the options for providing details on error

5. The Vernissage Programming Interface 53 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

conditions.)

 The Vernissage core software will call this method if the user decides to cancel an ongoing export
operation. Your plug-in code must take care that it actually terminates the run() method as fast as

possible then.

Plug-in modules may utilise a central string buffer mechanism for issuing messages to the user. All messages
placed in this buffer will be displayed automatically when the run() method of a plug-in returns false. Thus,

the main purpose of the message buffer facility is to provide detailed information about the cause of an error
condition.

There is only one message buffer which is shared among all plug-in modules. As the buffer will not be cleared
automatically, you may want to call the clearMessages() service routine of the Vernissage API to erase

messages issued by any plug-in module previously.

Routine Description

addMessage Adds an arbitrary character string to the message buffer.

clearMessages Clears all messages from the message buffer.

Table 6. Message management routines.

The plug-in "skeleton" will probably always look similar to the code shown below.

#include "MyPlugIn.h"

PlugIn::PlugInBase* createInstance ()

{

 return new PlugIn::MyPlugIn;

}

namespace PlugIn

{

 MyPlugIn::MyPlugIn ()

 {

 }

 MyPlugIn::~MyPlugIn ()

 {

 }

 void MyPlugIn::getIdentity (std::wstring& name,

 std::wstring& version,

 std::wstring& producer) const

 {

 name = L"MyPlugIn";

 version = L"V1.0";

 producer = L"Dr. John Doe";

 }

 PlugInBase::PlugInType MyPlugIn::getType () const

 {

 return pit_Exporter;

 }

 void MyPlugIn::init ()

 {

 }

5. The Vernissage Programming Interface 54 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

 void MyPlugIn::shutdown ()

 {

 }

 bool MyPlugIn::run (Vernissage::Session *pSession,

 std::wstring outputDirectoryPath,

 void *pFilterSet)

 {

 bool result = true;

 //

 // Process Bricklets here

 //

 return result;

 }

 void MyPlugIn::stop ()

 {

 }

 We include the private header file of the plug-in first.

 The plug-in must provide a factory routine the Vernissage core software will locate and call after loading the
plug-in module. The sole function of this routine is to create an instance of the plug-in class and to return
that instance to the caller (i.e. the Vernissage core).

The declaration of the factory routine is as follows: (note that you don’t need to declare the routine
yourselves, however, the plug-in code must implement it.)

extern "C"

{

 __declspec(dllexport) PlugIn::PlugInBase* createInstance ();

}

 You may use standard C++ constructor and destructor methods, if required for some purpose.

 In this example, you can see the most simple implementation of the getIdentity() method one can

choose. Remember that the name passed by the method must be unique for all plug-in modules that will be
loaded by Vernissage at run-time.

 The getType() method simply returns the plug-in type identification constant. (The only plug-in type

currently supported is "Exporter".)

 The init() and shutdown() methods can be used for providing module start-up and rundown code

that you cannot (or don’t want to) put into the class constructor and destructor functions.

 The run() method is the "point of entry" utilised by the Vernissage core software when the user initiates

an export operation. The filter set and the path specification of the output directory chosen by the user as
well as a pointer to the Vernissage API object will be passed as actual arguments.

 The stop() function must be implemented in a way it stops the operations of the plug-in module as fast

as possible. (See below for more information on this topic.)

The run() method of a Vernissage plug-in module executes in a dedicated system thread and you must

provide a suitable mechanism for terminating the execution of the routine if the user decides to cancel an
export operation. The most simple way of implementing such a termination mechanism is to monitor a flag

5. The Vernissage Programming Interface 55 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

variable indicating whether the stop() method has been called by the Vernissage core software. Consider

the example below:

 static bool gRun;

 bool MyPlugIn::run (Vernissage::Session *pSession,

 std::wstring outputDirectoryPath,

 void *pFilterSet)

 {

 bool result = true;

 gRun = true; // Initialise to "run"

 while (gRun)

 {

 //

 // Process Bricklets here

 //

 }

 return result;

 }

 void MyPlugIn::stop ()

 {

 gRun = false; // Signal "cancel run"

 }

Of course, a more elegant solution would be utilising a class member variable instead of a global static flag.

Please note that whatever implementation you choose for terminating the run() method, the plug-in module

should react as fast as possible to calls of its stop() method. (Failing to do so will almost certainly annoy

users who expect that they can continue to work immediately once they have decided to click the Cancel
button for stopping a progressing export operation.)

Iterating through the Bricklet Collection

Bricklets are at the centre of all software that processes MATRIX result files and most Vernissage services
require you to pass a Bricklet reference. Hence, using the mechanisms for traversing the Bricklets contained
by one or more result files is essential for both plug-in modules and third party applications.

The Vernissage API provides a mechanism that plug-in modules (but also third party applications) may use to
traverse the set of Bricklets the various result sets loaded consist of. This mechanism will pass the Bricklets
result set by result set and in the chronological order in which they were created. In addition, the traversal
mechanism is capable of applying filters and selections a Vernissage user has set up so that a plug-in module
only considers Bricklets that match the current selection or filter criteria.

The below table lists the routines providing access to the Bricklet traversal mechanism of the Vernissage
software.

Routine Description

getNextBricklet Returns the next Bricklet from the set of Bricklets loaded.

releaseBrickletContext Terminates a Bricklet traversal process and restarts it.

getBrickletCount Returns the total number of Bricklets loaded

Table 7. Bricklet traversal routines.

The below C++ code fragment shows how to iterate through the set of Bricklets that has been loaded. (It is

assumed that the variable pSession contains a pointer to an interface object of type

Vernissage::Session.)

5. The Vernissage Programming Interface 56 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

void *pContext = 0;

do

{

 void *pBricklet = pSession->getNextBricklet(&pContext);

 if (pBricklet != 0)

 {

 // Process the Bricklet here

 }

} while(pBricklet != 0);

The above code fragment will pass all data loaded, regardless which Bricklets had been selected for export by
the user.

However, plug-in modules can access the data selection and filter set the user has applied by means of the
"pFilterSet" actual parameter of the plug-in's run() function. Pass this parameter to the

getNextBricklet() service for restricting the iteration process to the Bricklets that have been selected

for export:

 void *pBricklet = pSession->getNextBricklet(&pContext,pFilterSet);

The API function getNextBricklet() returns a pointer to an opaque object representing a Bricklet;

however, plug-in modules and third party applications do not access the Bricklet representation object directly
through that pointer. Instead, you may pass the opaque object retrieved by a call to getNextBricklet()

to the various Bricklet-related Vernissage API functions, as shown in the below example.

void *pContext = 0;

void *pBricklet = pSession->getNextBricklet(pContext,pFilterSet);

// Determine which channel has produced the Bricklet we’ve just retrieved

std::wstring channelName = pSession->getChannelName(pBricklet);

// What physical unit is associated with the data stored by the Bricklet?

std::wstring unitName = pSession->getChannelUnit(pBricklet);

// ...

By calling getNextBricklet() multiple times, an application or plug-in module can iterate through the

set of Bricklets. Internally, the Vernissage software utilises the context argument passed to the
getNextBricklet() function for storing information about the state of the traversal operation. The

operation is complete when the last Bricklet in the set has been returned (in this case,
getNextBricklet() will return a null pointer); however, you may terminate the traversal operation also

by calling the API function releaseBrickletContext() as shown in the below example.

void *pContext = 0;

void *pBricklet;

// Get the first Bricklet

pBricklet = pSession->getNextBricklet(pContext,pFilterSet);

// Terminate the traversal operation, and restart from the beginning

pSession->releaseBrickletContext(&pContext);

// Get the first Bricklet (again)

pBricklet = pSession->getNextBricklet(pContext,pFilterSet);

5. The Vernissage Programming Interface 57 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Retrieving Related Bricklets

Bricklets that are logically associated ("related") as outlined in section Related Bricklets can be inquired by a
set of dedicated service routines.

Routine Description

getSuccessorBricklet Returns the next Bricklet from a consecutive series of Bricklets.

getPredecessorBricklet Returns the previous Bricklet from a consecutive series of Bricklets.

getReferencedBricklets Returns a list of Bricklets being referenced by a specific Bricklet.

getDependingBricklets Returns a list of Bricklets that "depend" on a specific Bricklet.

Table 8. Routines for finding related Bricklets.

The API functions getSuccessorBricklet() and getPredecessorBricklet() require a

Bricklet as input and will return the succeeding or preceding Bricklet provided that the Bricklet passed as input
is part of a consecutive series of Bricklets (such as a spectroscopy curve generated as part of a repeated
single point spectroscopy operation), or has a logical "successor" or "predecessor". (An example for a Bricklet
having a logical successor would be a Bricklet storing the phase data of a phase/amplitude curve set.)

A dedicated API function is provided for retrieving Bricklets that are referenced by a specific Bricklet: The
service routine getReferencedBricklets() will return a list of Bricklets that are being referenced by

the Bricklet specified as input to the routine, such as an SPM image referenced by a particular single point
spectroscopy curve. Vice versa, the service routine getDependingBricklets() will return a list of

Bricklets having a "depends-on" relationship with the Bricklet passed as input to the routine, such as a list of
single point spectroscopy curves referencing a particular SPM image.

The below code fragment demonstrates how to determine the Bricklets related to a particular Bricklet retrieved
by a call to the database iteration routine getNextBricklet().

std::vector<void *> relatives;

void *pBricklet = pSession->getNextBricklet(&pContext,pFilterSet);

switch (pSession->getType(pBricklet))

{

 case Vernissage::Session::btc_SPMSpectroscopy:

 // Single point spectroscopy curve, this one should have

 // a "parent" image.

 relatives = pSession->getReferencedBricklets(pBricklet,pFilterSet);

 if (relatives.size() > 0) // "Parent" Bricklet not filtered out?

 {

 // We may have also successors if the SPS Bricklet was acquired

 // as part of a repeated spectroscopy operation.

 void *pSuccessor;

 pSuccessor = pSession-> getSuccessorBricklet(pBricklet,

 pFilterSet);

 if (pSuccessor != 0) // Any successor Bricklet present?

 …

Obtaining Bricklet Information

The majority of the Vernissage API functions return a particular piece of information about a Bricklet. In
general, these functions fall into one of three categories:

1. Bricklet information routines inquire general information about a Bricklet, e.g. the file
specification of the result data file storing the Bricklet, the date and time of the Bricklet creation,

5. The Vernissage Programming Interface 58 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

the minimum and maximum raw values that a Bricklet stores, the Bricklet’s size and
dimensionality, etc.

4. Channel information routines return information about the data channel that delivered the raw
data stored by a Bricklet, such as the name of the channel, the physical unit associated with the
data produced by the channel, the instance name of the Experiment Element representing the
channel, etc.

5. Axis information routines inquire information about the configuration of axes associated with a
Bricklet (more specific, with the data channel through which a Bricklet was delivered), such as
the physical unit associated with an axis, the number of axis clocks (i.e. the length of an axis),
the table sets associated with an axis, etc. Please note that axis information routines are usually
capable of handle both plain and qualified axis names.

The following table summarises the general information query routines supported by the Vernissage API.

Routine Description

getCreationComment Returns the Bricklet creation comment entered by the MATRIX user.

getCreationTimestamp Returns the date and time of Bricklet creation.

getDataComment Returns the set of data-specific comments entered by the MATRIX user.

getDataSetName Returns the name of the data set as entered by the MATRIX user.

getDimensionCount Returns the dimensionality of a Bricklet (e.g. "1" for curves, "3" for volume
CITS data structures, etc.)

getResultDataFileSpec Returns the file specification of the result data file storing a particular
Bricklet.

getParentResultFileSpec Returns the file specification of the result file referencing a particular
Bricklet.

getSpatialInfo Returns information on the sample location(s) at which the data stored by a
particular Bricklet was acquired.

getRawMin Returns the minimum raw value a Bricklet stores.

getRawMax Returns the maximum raw value a Bricklet stores.

getRunCycleCount Returns the run cycle count of a Bricklet (see below).

getSampleName Returns the sample name entered by the MATRIX user.

getScanCycleCount Returns the scan cycle count of a Bricklet (see below).

getSequenceId Returns the sequence identification count of a Bricklet (see below).

getType Returns a code identifying the type of raw data stored by a Bricklet.

getTriggerAxisName Returns the plain name of the axis triggering the channel through which a
Bricklet was delivered.

getTriggerAxisQualifiedName Returns the qualified name of the axis triggering the channel through which
a Bricklet was acquired.

getViewTypes Returns the type names of the Data Views associated with a Bricklet.

getBrickletDataItemCount Returns the number of raw data values stored by a Bricklet.

Table 9. Bricklet information routines.

5. The Vernissage Programming Interface 59 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Each Bricklet stores information about its position in the stream of Bricklets generated during an experiment.
Four different information items can be distinguished:

 Sequence ID

 Run Cycle Count

 Scan Cycle Count

 Timestamp

The sequence ID is a running number, starting at "1", that gets incremented for each new Bricklet. However,
the sequence ID will be reset after the user has applied some structural change to the data space: Each time
users modify parameters such as points per scan line (or points per curve), lines per scan frame, sub-grid
state, scan mode and similar, the data space characteristics change and the next Bricklet will thus carry the
sequence ID "1".

The run cycle count starts at "1" and gets incremented each time you start a new a data acquisition operation;
what "operation" is actually counted depends on the configuration of the respective data channel. For
example, topography and similar data channels will indicate a new run count each time you restart the scan
process while a channel acquiring single point spectroscopy curves increases the run count for each new
single point spectroscopy operation you initiate. (Note that if you use the automatic repetition facility for single
point spectroscopy operations, all curves acquired during the various repetition cycles will have the same run
count assigned but utilise different scan cycle counts.) For electron spectroscopy data, the situation is very
similar: Each new spectrum acquisition operation will increase the run cycle count, while operations repeated
automatically will use an identical run cycle count and a scan cycle count incremented for each repetition.

Notice
By default, the run cycle count and scan cycle count information will also be rendered as
information overlay by the data displays when running MATRIX; you’ll find this overlay in
the upper left corner of each display. (The displays show the two counters as run cycle –
scan cycle — for example "4 - 2" for the second scan cycle during the fourth operation.) In
addition, the run cycle count and scan cycle count will also be used for generating result
data file names (such as "my_data--4_2.I_mtrx".)

Finally, the timestamp specifies at which date and time a particular Bricklet has been written. When inquired,
the timestamp will be provided with respect to the computer’s locale, i.e. time zone and daylight saving time
settings.

A plug-in module (or a third party application) will most often need to determine the characteristics of the data
stored by a particular Bricklet. A suitable way for getting hints about the nature of such data is to analyse the
dimensionality of a Bricklet and to check the type of Data Views the respective experiment had associated
with the data channel that originally delivered the Bricklet. Consider the below C++ code fragment:

void *pBricklet = pSession->getNextBricklet(&pContext,pFilterSet);

int dimensions = pSession->getDimensionCount(pBricklet);

std::vector<Vernissage::Session::ViewTypeCode> views =

 pSession->getViewTypes(pBricklet);

// One-dimensional data indicates a curve

if (dimensions == 1)

 if (std::find(views.begin(),views.end(),

 Vernissage::Session::vtc_ForceCurve) != views.end())

 {

 // A force/distance curve

 }

5. The Vernissage Programming Interface 60 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

 else if (std::find(views.begin(),views.end(),

 Vernissage::Session::vtc_Spectroscopy) != views.end())

 {

 // A curve from a single point spectroscopy operation

 }

 ...

As shown in the above example, the combined information of Bricklet dimensionality and Data View type
associations provide a good means to determine the experimental context in which a Bricklet was produced;

however, in most cases it is sufficient to call the getType() service for determining the contents of a

Bricklet. The getType() routine returns a code identifying the raw data contents of a Bricklet, as

demonstrated below:

Vernissage::Session::BrickletTypeCode code = pSession->getType(pBricklet);

if (code == Vernissage::Session::btc_SPMImage)

 // An SPM image

 ...

You may also choose different approaches to getting hints on the nature of a Bricklet; however, simple checks
are often inadequate, as shown in the below example.

void *pBricklet = pSession->getNextBricklet(&pContext);

std::wstring channelName = pSession->getChannelName(pBricklet);

if (channelName == L"Z")

{

 // We *cannot* be sure that this is a topography image!

}

As the name of the channel through which a Bricklet was delivered is actually arbitrary, you should not use it
for "guessing" the contents of a Bricklet.

The following table summarises the Vernissage API routines dedicated to the query of channel-related
information.

Routine Description

getChannelName Returns the logical name of the data channel associated with a Bricklet.

getChannelInstanceName Returns the name of the Experiment Element instance representing the
data channel associated with a Bricklet.

getChannelUnit Returns the physical unit of the data delivered by a data channel.

getChannelRawMin Returns the minimum raw value a particular data channel may deliver.

getChannelRawMax Returns the maximum raw value a particular data channel may deliver.

Table 10. Channel information routines.

For SPM experiments, the difference between the logical channel name and the Experiment Element instance
name of a data channel is significant: The instance name of the Experiment Element is a technical name,
similar to the identifier name of a C++ class or routine, while the logical name of a channel most often
represents the signal the particular channel acquires. For example, the Experiment Element instance "I_V "
used by the standard STM spectroscopy experiment shipped with the MATRIX system represents a channel
acquiring the tunnelling current during V-spectroscopy operations. Consequently, the logical name of the
channel represented by the Experiment Element instance "I_V " is "I(V) ".

As outlined in section Axes and Axis Hierarchies, information about the configuration of the axis hierarchy
associated with a data channel is essential for analysing the contents of a Bricklet. Thus, the Vernissage API
offers several functions that assist in determining the axis hierarchy characteristics.

5. The Vernissage Programming Interface 61 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Routine Description

getRootAxisName Returns the plain name of the root axis of the axis hierarchy
associated with a particular Bricklet.

getRootAxisQualifiedName Returns the qualified name of the root axis of the axis hierarchy
associated with a particular Bricklet.

getTriggerAxisName Returns the plain name of the axis triggering the data channel
through which a particular Bricklet was delivered.

getTriggerAxisQualifiedName Returns the qualified name of the axis triggering the data cannel
through which a particular Bricklet was delivered.

getAxisUnit Returns the name of the physical unit associated with an axis.

getAxisClocks Returns the number of clocks configured for an axis.

getAxisDescriptor Returns the complete set of configuration data for an axis.

getAxisTableSets Returns the table sets associated with an axis.

getAxisParameter Returns information about an axis parameter associated with a
particular axis.

getAxisParameters Returns information about all axis parameter associated with a
particular axis

Table 11. Axis information routines.

The axis hierarchy associated with a Bricklet has to be considered for almost any Bricklet in order to process
the Bricklet contents correctly. For each axis, you may inquire an axis descriptor providing all information
characterising a particular axis configuration. In C++, the axis descriptor is defined as follows:

struct AxisDescriptor

{

 int rawStart;

 int rawIncrement;

 double physicalStart;

 double physicalIncrement;

 std::wstring physicalUnit;

 bool mirrored;

 int clocks;

 std::wstring triggerAxisName;

};

The below example code fragment utilises axis descriptors to determine the configuration of a Bricklet
containing two-dimensional data.

if (pSession->getDimensionCount(pBricklet) == 2)

{

 // Two dimensions, probably an image

 Vernissage::Session::AxisDescriptor triggerAxis =

 pSession->getAxisDescriptor(pBricklet,

 pSession->getTriggerAxisName(pBricklet));

 // Determine the length of one "line" of data

 int lineLength = triggerAxis.clocks;

 if (triggerAxis.mirrored)

 {

 // The axis has the "mirrored" characteristic, thus it has a

 // "forward" and a "backward" section. Thus, the length of one line

5. The Vernissage Programming Interface 62 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

 // is only half the number of clocks that triggered the channel.

 lineLength = lineLength / 2;

 }

 // Now we can determine the Bricklet "width". If the axis has the unit

 // "meter", then it would be really a width (probably the scan area

 // width.)

 double width = triggerAxis.physicalStart +

 (lineLength – 1) * triggerAxis.physicalIncrement;

 // There must be another axis, because the Bricklet has two dimensions:

 Vernissage::Session::AxisDescriptor masterAxis =

 pSession->getAxisDescriptor(pBricklet,

 triggerAxis.triggerAxisName);

 ...

Please note that most of the axis-related API functions of Vernissage can handle both plain axis names and
qualified axis names. (See section Axes and Axis Hierarchies for more information on the different views to
axis names.) For example, the information returned by the routine getAxisDescriptor() depends on

the axis name passed: If you specify a plain axis name as input to the routine, the field triggerAxisName of the
axis descriptor data structure returned will also contain a plain name. Likewise, passing a qualified axis name
will cause the routine to fill a qualified axis name into the field triggerAxisName.

In the above code fragment, various techniques for retrieving information from an axis descriptor are
demonstrated and obviously it can be laborious to determine all details required for processing the contents of
a Bricklet. Sometimes, it might thus appear more convenient to simply query the value of an Experiment
Element instance parameter instead of analysing the axis hierarchy configuration (for example, one could
locate an Experiment Element instance of type XYScanner and query the value of its parameter Width in

order to determine the scan area width at Bricklet creation time), however, this approach to analysing Bricklet
contents is actually not always future-proof: while current MATRIX experiments might use a particular
Experiment Element in always the same way, this might not be true for the experiments supported by
forthcoming MATRIX versions. For example, consider an experiment utilising two instances of the Experiment
Element XYScanner — As it is actually hard to determine which of the two instances is associated with the
data channel through which a particular Bricklet has been delivered, you would not be able to select the
correct instance for the parameter query and thus might end up with the wrong width value.

Axes can have associated "meta" information referred to as "axis parameters". Axis parameters store data
related to the specific semantics of a particular axis and can be important for certain operations, see chapter
"Axis Parameters" on page 42. (For example, some axis types used in conjunction with electron spectroscopy
experiments are associated with calibration information such as dispersion correction and normalisation
factors that play an important role in quantitative analysis procedures.)

Table sets associated with the axes of an axis hierarchy provide another important aspect when analysing the
contents of a Bricklet, as they restrict the number of clocks that triggered a data channel during experiment
execution. The MATRIX system currently utilises table sets for defining the sub-grid used during raster
spectroscopy operations only (in other words, in all other cases when there is no table set defined, a plug-in
module can treat the missing table set just like a table set of the form [1, clocks, 1] which means that a trigger
will be produced for all clocks configured for a particular axis). As a result, when developing a plug-in module,
it is currently safe to assume that the table set configuration must be considered only when processing
Bricklets that have a dimensionality of three and are associated with a View of type Spectroscopy (type code
vtc_Spectroscopy) or for which the getType() service returns the identification code

btc_VolumeCITS.

The table set concept is very powerful but also quite complex and using it properly requires some careful
thought. The below example code demonstrates how to utilise table set information that has been attached to
the SPM spectroscopy axis and the X-axis of an axis hierarchy; the hierarchy consists of three axes that have
been ordered in the typical manner of a raster spectroscopy experiment: The root axis is Y which triggers X
which in turn triggers the spectroscopy axis. A table set attached to the X-axis restricts the clock positions of

5. The Vernissage Programming Interface 63 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

the Y-axis at which X gets actually triggered. In the same manner, a table set attached to the spectroscopy
axis restricts the clock positions of the X-axis at which a spectroscopy operation gets initiated.

The example implements an algorithm that iterates through the clock positions of the Y– and X-axis, checking
for all possible combinations whether they will trigger the spectroscopy axis.

Vernissage::Session::AxisDescriptor specAxis =

 pSession->getAxisDescriptor(pBricklet,

 pSession->getTriggerAxisName(pBricklet));

Vernissage::Session::AxisDescriptor xAxis =

 pSession->getAxisDescriptor(pBricklet,

 specAxis.triggerAxisName);

Vernissage::Session::AxisDescriptor yAxis =

 pSession->getAxisDescriptor(pBricklet,

 xAxis.triggerAxisName);

Vernissage::Session::AxisTableSets sets =

 pSession->getAxisTableSets(pBricklet,

 pSession->getTriggerAxisName(pBricklet));

Vernissage::Session::TableSet xSet = sets[specAxis.triggerAxisName];

Vernissage::Session::TableSet ySet = sets[xAxis.triggerAxisName];

Vernissage::Session::TableSet::const_iterator yIt = ySet.begin();

Vernissage::Session::TableSet::const_iterator xIt = xSet.begin();

int tx = (*xIt).start;

int ty = (*yIt).start;

int x, y = 1;

// Use the axis configuration data for iterating the axis hierarchy

while (y <= yAxis.clocks) // Root axis

{

 x = 1;

 while (x <= xAxis.clocks) // Axis triggered by root axis

 {

 if ((x == tx) && (y == ty))

 {

 // Table set and axis "positions" match --> The spectroscopy axis

 // will be triggered!

 // ...

 // Advance to the next position described by the interval

 tx = tx + (*xIt).step;

 // End of the X-axis interval reached? If so, select the next

 // interval of the table set (if any)

 if (tx > (*xIt).stop)

 {

 ++xIt;

 if (xIt != xSet.end()) // End of table set not yet reached?

 {

 // We have selected the next X-axis interval, so we

 // reinitialise our coordinate variable now.

 tx = (*xIt).start;

 }

 else

 {

 // We have traversed all X-axis intervals specified. Thus,

 // advance the Y-axis interval and reset the X-axis interval.

 ty = ty + (*yIt).step;

 xIt = xSet.begin();

 tx = (*xIt).start;

5. The Vernissage Programming Interface 64 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

 // End of the Y-axis interval reached? If so, select the next

 // interval (if any)

 if (ty > (*yIt).stop)

 {

 ++yIt;

 if (yIt != ySet.end())

 {

 // We have selected the next Y-axis interval, so we

 // reinitialise our coordinate variable now.

 ty = (*yIt).start;

 }

 }

 }

 }

 }

 x = x + 1; // Next point

 }

 y = y + 1; // Next line

}

Accessing Raw Data

By default, Vernissage will not load the raw data content of any Bricklet. Thus, when your software requires
access to actual raw data items, you must direct the Vernissage core to first load the "payload" of a Bricklet.

Consider the following C++ code fragment:

void *pBricklet = pSession->getNextBricklet(&pContext,pFilterSet);

const int *pBuffer;

int rawDataItems;

loadBrickletContents(pBricklet,&pBuffer,rawDataItems);

int firstRawDataItem = *pBuffer;

...

unloadBrickletContents(pBricklet);

The above code fragment demonstrates how to gain access to the raw data stored by a particular Bricklet:
The Vernissage API routine loadBrickletContents() will allocate a data buffer large enough for

holding the Bricklet contents, load the raw data into the buffer and return the buffer address to the calling
software. When the routine returns, the buffer will hold the number of raw data items returned in the variable
passed as third argument to loadBrickletContents(); the buffer will contain the raw data items in the

exact order in which they were originally acquired during experiment execution.

The contents of the buffer allocated by loadBrickletContents() remain valid until the Vernissage API

routine unloadBrickletContents() gets called with the same Bricklet argument. As Bricklets can

become quite large, you should double-check whether your plug-in module code contains corresponding calls
to unloadBrickletContents() for each call to loadBrickletContents(); missing calls to

unloadBrickletContents() will cause "memory leaks" of probably significant size.

See section Raw Data Organisation for more information on the order of raw data items in a Bricklet.

Raw values represent data exactly as acquired by the instrument electronics, thus such values must often be
converted into their corresponding physical quantities. The Vernissage API offers routines that can compute a
physical quantity from a raw value and vice versa. For this purpose, the respective routines will utilise the
same data transfer functions that were used by the MATRIX software at the time the result set was created.

5. The Vernissage Programming Interface 65 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Routine Description

toPhysical Transforms a raw value into its physical equivalent.

toRaw Transforms a physical quantity into its raw equivalent.

Table 12. Data transformation routines.

Although most information required for interpreting the contents of a Bricklet can be obtained by calling the
various Bricklet and axis information routines, in some scenarios it can also be of interest to inquire details on
the Experiment Element instances of a specific experiment, for example, the value of some Experiment
Element instance parameter.

In general, one may either want to check the value of a particular deployment parameter of an Experiment
Element instance, or the value of an Experiment Element instance parameter at the time a specific Bricklet
was created:

 Deployment parameter values can be of interest if details regarding the static
configuration of an experiment are required. This should be a very rare case, but
can be useful for special purposes.

 Experiment Element instance parameter values provide background information on
the dynamic aspects of an experiment configuration, e.g. the gap voltage used, the
effective feedback loop gain, or the configured scan area offset.

The Vernissage API provides the following routines for inquiring Experiment Element information:

Routine Description

getExperimentElementInstanceNames Returns the names of all Experiment Element
instances of an experiment.

getExperimentElementDeploymentParameter Returns the (character string) value of a
deployment parameter of an Experiment
Element instance.

getExperimentElementDeploymentParameters Returns the (character string) values of all
deployment parameters of an Experiment
Element instance.

getExperimentElementParameter Returns the value of a single parameter of an
Experiment Element instance at Bricklet creation
time.

getExperimentElementParameters Returns the value of all parameters of an
Experiment Element instance at Bricklet creation
time.

Table 13. Experiment element information routines.

The parameters of an Experiment Element can be of different data types; the Vernissage API functions will
hence return any parameter value as a wide character string. Although this simplifies the calling sequence, it
may require the implementation of dedicated value conversion mechanisms. Consider the following C++ code
fragment:

5. The Vernissage Programming Interface 66 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

// Get the names of all instances of Experiment Element type "XYScanner"

std::vector<std::wstring> instanceNames(

 pSession->getExperimentElementInstanceNames(pBricklet,L"XYScanner"));

// If there is only one instance, obtain its parameters

if (instanceNames.size() == 1)

{

 std::wstring scannerName = instanceNames[0];

 std::map<std::wstring, Vernissage::Session::Parameter> parameters =

 pSession->getExperimentElementParameters(pBricklet,scannerName);

 // Determine the scan area offset at the time the Bricklet referred

 // to by ‘pBricklet’ was created

 std::wstring xOff = parameters[L"X_Offset"].value;

 std::wstring yOff = parameters[L"Y_Offset"].value;

 // This is not really required, as we know that the data type of the

 // parameters is "double-precision floating point"

 if (parameters[L"X_Offset"].valueType ==

 Vernissage::Session::Parameter::vt_Double)

 {

 double xOffset = _wtof(xOff.c_str());

 double yOffset = _wtof(yOff.c_str());

 // Next conditional is only for demonstration purposes, as the unit

 // of the scanner parameters "X_Offset" and "Y_Offset" is always

 // "Meter".

 if (parameters[L"X_Offset"].unit == L"Meter")

 {

 // Turn into Nanometers

 double xOffsetNm = xOffset / 1.0e-9;
 double yOffsetNm = yOffset / 1.0e-9;

 ...

In the above example, the names of all Experiment Element instances of type XYScanner are inquired;
afterwards, the code fetches the complete parameter set of the (only) instance. Finally, the values of the
parameters X_Offset and Y_Offset are converted into double-precision floating point values by means

of the Microsoft Visual C++ run-time library function _wtof().

Please note that "Foreign Parameters" you may have added to an experiment by means of the respective
mechanisms of the MATRIX Automated Task Environment (MATE) are treated as parameters of the pseudo-
Experiment Element instance "-Foreign" (of type "Foreign"). The following example demonstrates how to
access the foreign parameter "My_Temperature_Parameter":

std::vector<std::wstring> instanceNames(pSession->

 getExperimentElementInstanceNames(pBricklet,L"Foreign"));

if (instanceNames.size() == 1)

{

 std::wstring foreign = instanceNames[0];

 std::map<std::wstring, Vernissage::Session::Parameter> parameters =

 pSession->getExperimentElementParameters(pBricklet,foreign);

 std::wstring temperature =

 parameters[L"My_Temperature_Parameter"].value;

For special purposes, the Vernissage API also provides an option for obtaining the value of a deployment
parameter utilised by an Experiment Element instance. As already mentioned, accessing the Experiment
Element deployment parameters is rarely required. However, you may use the
getExperimentElementDeploymentParameter() service function for obtaining the value of some

deployment parameter, as shown in the below C++ code fragment:

5. The Vernissage Programming Interface 67 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

std::wstring actuatorName =

 getExperimentElementDeploymentParameter(pBricklet,

 L"Spectroscopy",

 L"Actuator_Axis_1");

The above code fragment queries the value of the deployment parameter Actuator_Axis_1 of the

SPM Experiment Element instance Spectroscopy. The returned character string could, for example, be "V" or
"Z", depending on the configuration of the Experiment Element.

You may also inquire a list of all deployment parameters and their associated values used by a specific
Experiment Element instance by calling the service routine
getExperimentElementDeploymentParameters().

Please note that all values of Experiment Element deployment parameters are of type "character string" and
have no associated information (such as a unit).

Miscellaneous Services

Some functions of the Vernissage API serve very special purposes or provide information not related to the
processing of Bricklets. In particular, these functions are:

 getSession() and releaseSession() — Third party applications must

utilise these routines for managing the object providing access to the remaining
Vernissage API functions.

 getExperimentInfo() and getMetaData() — These routines inquire

information about the experiment that produced a result set and about the result
set itself.

 getPlugInInfo() — This routine returns information about the plug-in

modules loaded.

 showWorkInProgress() — This routine allows plug-in modules to indicate

the progress of an ongoing operation.

The Vernissage API also provides a number of convenience functions not related to the processing of
MATRIX result files or result data files. These functions, however, are often useful when developing plug-in
modules.

Routine Description

ansiToUnicode Converts an 8-bit ANSI multi-byte character string into its Unicode equivalent.

unicodeToAnsi Converts an Unicode character string into its 8-bit ANSI multi-byte equivalent.

createOutputFile Creates a new output file and opens it for writing.

closeOutputFile Closes an output file.

createDirectory Creates a new directory.

directoryExists Checks whether a particular directory already exists.

makePath Appends a file specification component to an existing path specification.

splitPath Splits an existing path specification into its components.

Table 14. Convenience routines.

6. Flat File Format Reference 68 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

6. Flat File Format Reference

This part details the Flat File Format (FFF) used by default for exporting MATRIX result data sets. Note that
you must be familiar with the concepts and terminology outlined in chapter Understanding the Result File
System in order to understand this specification.

The FFF is a flattened representation (hence the name) of the native MATRIX result set layout called Data
Space Persistence Format (DSPF). Unlike the DSPF, the FFF combines the contents of each Bricklet (i.e.
acquired data) with related information into a single file in a way that the file is self-contained and can be
processed without referring to additional information. The main advantages of the FFF are:

 Simple structure — The FFF can be interpreted by straightforward file parsers that
can be developed easily.

 Self-contained contents — Each file contains all the information required to
interpret the acquired raw data, thus the files can be used, stored and shared
individually.

 Stores original raw data — The acquired data are stored exactly as provided by
MATRIX and unchanged with respect to the original result data set.

The major drawback of the FFF is that it requires more disk space than the DSPF. In addition, the logbook
character of the DSPF is not retained by the FFF.

General Structure

The Flat File Format is a binary data format storing raw measurement data as well as additional information
required to interpret the raw data correctly. Raw data items are copied exactly as originally acquired by the
MATRIX software and are thus 32-bit signed integer figures (in 2-th complement format) and with "little
endian" byte order (i.e. the least significant byte is stored first).

31Bit 0

Least significant

byte

Most significant

byte
Sign bit

31Bit 0

01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0

= 0000 0000 0000 0111 1111 1111 1111 1111
2
 = 0007FFFF

16
 = 524287

10

31Bit 0

0 1 1 1 1 1 1 1 1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0

= 1111 1111 1111 1000 0000 0000 0000 0000
2
 = FFF80000

16
 = - 524288

10

0 0 0 0 0 0

Figure 37. Raw data item format

6. Flat File Format Reference 69 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Besides the raw data, each Flat file stores the following details:

 Experiment and user information.

 Bricklet creation information such as timestamp, creation comment, utilised
channel, etc.

 The axes associated with the Bricklet as well as the configuration and
characteristics of each axis.

 The transfer function required to transform a raw value into a physical quantity.

 Important experiment and axis parameters.

For storing character sequences (such as parameter names), the FFF utilises string descriptors consisting of
a 32-bit length field, followed by a sequence of 16-bit values: while the length field determines the number of
characters the sequence comprises, the sequence of 16-bit values describes the characters in Unicode UTF-
16 wide-character encoding.

H

(0048
16

)

e

(0065
16

)

l

(006C
16

)

l

(006C
16

)

o

(006F
16

)

Length

(5)

Figure 38. Character sequence example — Encoding of "Hello"

If a string is empty, its length field is zero. In this case, the string descriptor consists of the length field only.

Real figures are expressed as double-precision floating point numbers utilising the IEEE floating point number
representation. Each value is represented as an eight byte sequence consisting of a sign bit, an 11-bit
excess-1023 binary exponent (containing the order of magnitude of the value) and a 52-bit mantissa
(containing the value itself). The most significant bit of any double-precision floating point value is always the
sign bit. If it is 1, the number is considered negative; otherwise, it is considered a positive number.

Because exponents are stored in an unsigned form, the exponent is biased by half its possible value, i.e. it is
actually 1023. One can compute the actual exponent value by subtracting the bias value from the exponent
value.

The mantissa is stored as a binary fraction greater than or equal to 1 and less than 2. (Note that there is an
implied leading 1 in the mantissa in the most-significant bit position, so mantissas are actually 53 bits long.
However, the most-significant bit is not stored.)

63Bit 0

Sign bit

Mantissa

Byte #0

Mantissa

Byte #1

Mantissa

Byte #2

Mantissa

Byte #3

Mantissa

Byte #4

Mantissa

Byte #5

4 Bit

Mantissa

(high)

4 Bit

Exp.

(low)

Exponent

(high)

Figure 39. Floating point figure representation

6. Flat File Format Reference 70 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Notice
Note that the FFF real figure representation is identical to the one used by the C++ data

type double on an Intel-CPU-based PC, thus you can read a floating point figure from an

FFF-encoded file directly into a C++ variable of type double without the need to run any

conversion operation.

Bricklet Container File Structure

Basically, each Flat file consists of a series of sections each storing a stream of 32-bit integer values. The
sequence of sections is outlined in the below table.

No. Name Description

1 File identification This section stores a "magic word" identifying the file format and the
structure level identification of the format.

2 Axis hierarchy description Stores a description of the axis hierarchy associated with the
Bricklet and the complete axis configuration information. (Note that
axis parameters are part of the "Experiment parameters list".)

3 Channel description Stores information about the data channel through which the
Bricklet was delivered and the transfer function required for
transforming raw data into physical quantities. In addition, this
section lists the types of all Data Views that the experiment had
associated with the channel.

4 Creation information This section contains the Bricklet creation timestamp and the
various textual information items (sample name, comments, etc.)
associated with the Bricklet.

5 Raw data The acquired raw data of the Bricklet.

6 Sample position information If applicable, this section stores coordinates describing the sample
positions at which the raw data were acquired.

7 Experiment information Stores information about the experiment that has generated the
Bricklet and related information.

8 Experiment parameter list This section stores the values of all monitored Experiment Element
parameters as well as all axis parameters that were valid at Bricklet
creation time.

9 Experiment Element deployment
parameter list

This section stores information about the deployment parameters of
all Experiment Element instances.

The different file section types have an individual structure; the structure of each type is detailed below.

File Identification

The file identification section contains only two 32-bit integer values depicted below:

 Byte 0 Byte 1 Byte 2 Byte 3

"Magic word" 70 76 65 84 = 0x54414C46

File structure level 48 49 48 48 = 0x30303130

6. Flat File Format Reference 71 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

The first four bytes are the so-called "magic word" allowing file reader software to identify the file contents.
When interpreted as ASCII characters, these four bytes form the word "FLAT".

The subsequent four bytes describe the file structure level, i.e. the "format version number" of the FFF. The
structure level is stored as ASCII character sequence and will currently be "0100".

Note: The structure level of the Flat File Format is tightly coupled to the structure level of the MATRIX Data
Space Persistence Format. If the DSPF structure changes, the structure of the FFF will most likely also
change.

Axis Hierarchy Description

The axis description section stores information about the axis hierarchy (starting with the trigger axis)
associated with a Bricklet and details the configuration of all axes in the hierarchy. Besides a counter
specifying the number of axes the axis hierarchy consists of, the section comprises a set of axis descriptions.

Byte 0 1 2 3

Integer Axis Count Number of axes

Axis Description Trigger Axis Description #1

Axis Description Axis Description #2

 ...

Each axis description takes the form depicted below (note that all axis names are qualified axis names):

Byte 0 1 2 3

Wide-character
String

Axis Name Length Name of the axis

Character #1 Character #2

...

Wide-character
String

Parent Axis Name Length Name of the parent axis (empty
string in case of the root axis)

Character #1 Character #2

...

Wide-character
String

Axis Unit Name Length Physical unit name

Character #1 Character #2

...

Integer Clock Count Number of clock positions

Integer Axis Start Value ("Raw") Start value as "raw" figure

Integer Axis Increment ("Raw") Increment as "raw" figure

Double Axis Start Value (Physical) Start value as physical quantity

6. Flat File Format Reference 72 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Double Axis Increment (Physical) Increment as physical quantity

Boolean Mirrored "Mirrored" characteristics flag

Integer Table Set Count Number of associated table sets

Wide-character
String

Set #1: Axis Name Length Name of the axis the first table set
is associated with

Character #1 Character #2

...

Integer Interval Count Number of intervals

Integer Interval #1: Start Clock Start clock position

Integer Interval #1: Stop Clock Last clock position

Integer Interval #1: Step Clock increment of interval

 ... (Repeated for all intervals)

Wide-character
String

Set #2: Axis Name Length Name of the axis the second table
set is associated with

Character #1 Character #2

...

 ... (Repeated for all table sets)

Notice
Please note that "Table Set Count" can also be zero; in this case, no table set description
fields will be generated.

Channel Description

The next section in a file utilising the FFF is dedicated to the data channel through which the Bricklet
described by the file has been delivered. The channel description section contains all information required for
identifying the channel and for interpreting the raw data contents of the Bricklet; the structure of the section is
shown below.

Byte 0 1 2 3

Wide-character
String

Channel Name Length Logical name of the channel

Character #1 Character #2

...

Wide-character
String

Transfer Function Name Length Name of the transfer function

Character #1 Character #2

...

Wide-character
String

Unit Name Length Physical unit name

Character #1 Character #2

...

6. Flat File Format Reference 73 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Integer Parameter Count Number of function parameters

Wide-character
String

Parameter #1: Name Length Name of first transfer function
parameter

Character #1 Character #2

...

Double Parameter #1: Value Parameter value

Wide-character
String

Parameter #2: Name Length Name of second transfer function
parameter

Character #1 Character #2

...

 ... (Repeated for all parameters)

Integer Data View Type Count Number of Data View types

Integer Data View#1: Type Identifier View type code

 ... (Repeated for all Views)

The channel description section provides information on the transfer function required for computing physical
quantities from the raw value content of the Bricklet. Besides the name of the transfer function to be used, the
section stores also the function’s parameter values.

Currently, there a three different types of transfer functions; the table below details these functions.

Name Calculation rule Parameter names

TFF_Linear1D

f

offsetraw
physical

Offset

Factor

TFF_MultiLinear1D

preneutral

pre

ff

offsetrawoffsetraw
physical

)()(1

Raw_1

PreOffset

Offset

NeutralFactor

PreFactor

TFF_Identity rawphysical —

The calculation rules given in the above table must be used for transforming a raw data item from a Bricklet
(to be inserted as parameter raw of the respective rule) into a physical quantity. The parameter names in the
third column specify the names of the remaining function parameters as used in a data channel description.

The channel description also stores a list of Data View types; Data Views of the types denoted by the list were
attached to the channel at experiment execution time and hint at the nature of the data stored by a Bricklet.
(Most often, the dimensionality of a Bricklet — that is, the number of axes it is associated with — together with
the Data View types provide a good means for determining the type of data the Bricklet contains. For

example, a dimensionality of three and a Data View of type vtc_Spectroscopy indicate that the Bricklet

stores spectroscopy curves acquired during a volume CITS experiment. As another example, a dimensionality
of two together with a Data View of type vtc_ForwardBackward2D would hint at a topography image or

a similar image type.)

6. Flat File Format Reference 74 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

See section Understanding Data Views for more information on Data Views and the Data View type codes
currently supported.

Creation Information

The creation information section stores the date and time when the Bricklet was originally stored by the
MATRIX system. This information is provided as a single 64-bit integer specifying the creation time as the
number of seconds since midnight of January, 1st 1970; the respective value is structurally compatible with the
standard C-library data type time_t.

The second data item of the Bricklet creation information section is a wide-character string storing the sample
name, the data set name, and all comments specified by the MATRIX user during experiment execution time.

Byte 0 1 2 3

64-bit Integer Timestamp Creation timestamp

Wide-character
String

Information String Length Bricklet information as specified
by user

Character #1 Character #2

...

Raw Data

Besides the raw data contents of a Bricklet, this section stores two 32-bit integers determining the total
number of data items the Bricklet can store and the actual number of data items stored. If the Bricklet results
from a completed data acquisition operation, the two figures will be identical. If the data acquisition process
was stopped by the user while progressing, the Data Item Count figure will represent the number of data items
actually acquired before the process was stopped.

The structure of the raw data section is shown below.

Byte 0 1 2 3

Integer Bricklet Size Bricklet size in data items

Integer Data Item Count # of data items actually stored

Integer "Raw" Data Item #1 Bricklet contents

 ...

See section Raw Data Organisation for information on the order of raw data items in a Bricklet.

Sample Position Information

A Bricklet might store information about the sample location(s) at which it was acquired. (The most prominent
case is single point spectroscopy; Bricklets storing single point spectroscopy curves contain information about
the sample location at which the spectroscopy operation was run. However, a Bricklet can also be associated
with more than one sample location, such as a curve consisting of a number of data points each of which was
acquired at a different sample location.)

The sample positions are provided as offsets (in metres) to the centre of the configured scan area. If no
position information is available, the Offset Count field will be zeroed.

6. Flat File Format Reference 75 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Byte 0 1 2 3

Integer Offset Count # of offsets (X/Y pairs) stored

Double Offset #1 X-direction First X-axis offset to centre of
scan area

Double Offset #1 Y-direction First Y-axis offset to centre of
scan area

 ...

Experiment Information

The experiment information section stores several (wide-)character strings dedicated to details on the
experiment which generated a particular Bricklet at execution time, about the software products that were
used for result file and Flat file generation and the user who conducted the experiment. In particular, the
section comprises the following information:

 The name, version identification and description text of the MATRIX experiment
that has produced the Bricklet.

 The file specification of the description file defining the experiment.

 The identification of the software product that has created the Flat file.

 The identification of the MATRIX software that has created the original result file.

 The MATRIX-specific user name (usually "default") of the user who conducted the
experiment.

 The Microsoft Windows account name of the user who conducted the experiment.

 The file specification of the original result data file storing the Bricklet.

 The run and scan cycle identification numbers associated with the Bricklet.

The structure of the experiment information section is shown below.

Byte 0 1 2 3

Wide-character
String

Experiment Name Length Experiment name

Character #1 Character #2

...

Wide-character
String

Experiment Version Length Experiment version identifier

Character #1 Character #2

...

Wide-character
String

Experiment Description Length Description text associated with
experiment

Character #1 Character #2

...

6. Flat File Format Reference 76 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Wide-character
String

Experiment File Specification Length File specification of original XML
experiment description

Character #1 Character #2

...

Wide-character
String

File Creator Identification Length Identification of Flat file creator
software

Character #1 Character #2

...

Wide-character
String

Result File Creator Identification Length Identification of MATRIX result file
creator software

Character #1 Character #2

...

Wide-character
String

User Name Length MATRIX user identification

Character #1 Character #2

...

Wide-character
String

Account Name Length Microsoft Windows account name

Character #1 Character #2

...

Wide-character
String

Result Data File Specification Length File specification of original result
data file

Character #1 Character #2

...

Integer Run Cycle Identification Experiment run cycle

Integer Scan Cycle Identification Experiment scan cycle

6. Flat File Format Reference 77 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Experiment Parameter List

Each Flat file also contains a snapshot of the Axis and Experiment Element instance parameters at the time
the Bricklet was created.

The parameters are grouped by Axis or Experiment Element instance; for each parameter, the following
information is provided:

 The parameter name

 The SI unit associated with the parameter value. (See section Data Types and
Formats for more information on the supported units.)

 The identification code of the data type used for encoding the parameter value.
(See section Data Types and Formats for more information on the parameter
value type codes supported.)

 The parameter value, provided as character string.

A schematic view of the Experiment parameter list is depicted below.

Byte 0 1 2 3

Integer Instance Count # of Axis and Experiment
Elements instances

Wide-character
String

Instance #1: Name Length Name of the first Axis or
Experiment Element instance

Character #1 Character #2

...

Integer Parameter Count # of parameters

Wide-character
String

Parameter #1: Name Length Parameter name

Character #1 Character #2

...

Integer Parameter #1: Value Type Code Data type code of parameter

Wide-character
String

Parameter #1: Unit Length Parameter (SI) unit

Character #1 Character #2

...

Wide-character
String

Parameter #1: Value Length Parameter value, encoded as
character string

Character #1 Character #2

...

 ... (Repeat for all parameters and
Experiment Element instances)

6. Flat File Format Reference 78 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Experiment Element Deployment Parameter List

For special purposes, the last section in a Flat file stores a list of the deployment parameters of each
Experiment Element instance. As deployment parameters use character string values only, there is no type or
unit information for any of these parameters.

The structure of the Experiment Element deployment parameter list is depicted below.

Byte 0 1 2 3

Integer Experiment Element Instance Count # of Experiment Elements

Wide-character
String

Experiment Element Instance #1: Name Length Name of the first Experiment
Element instance

Character #1 Character #2

...

Integer Deployment Parameter Count # of parameters

Wide-character
String

Parameter #1: Name Length Deployment parameter name

Character #1 Character #2

...

Wide-character
String

Parameter #1: Value Length Deployment parameter value

Character #1 Character #2

...

 ... (Repeat for all parameters and
Experiment Element instances)

7. Service Routines Reference 79 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

7. Service Routines Reference

This part provides detailed descriptions of the routines that constitute the Vernissage Application
Programming Interface (VAPI).

Notice
Most of the VAPI routines do not have a means to signal error conditions, thus the results of
calling a service routine with invalid parameters are unpredictable.

addMessage

Adds a message to the global message buffer.

Syntax addMessage (message)

 Argument Data Type Access

message Wide-character string Read

C++ Binding #include "Vernissage.h"

void Session::addMessage(std::wstring message);

Arguments message
An arbitrary message to be added to the global message buffer.

Description Vernissage provides a global message buffer that can be used by plug-in modules to
issue arbitrary messages to the user. The message buffer mechanism is most useful
for issuing error messages if a plug-in detects some problem that prevents it from
completing its operations successfully.

Calling addMessage() will place the message string passed into the global

message buffer. The Vernissage core software will display the contents of this buffer
at some point, however, addMessage() will usually not cause the message buffer

contents to be displayed immediately.

Omicron recommends to restrict the use of the global message buffer to error
messages only.

Return Values —

Associated Routines getMessages()

clearMessages()

7. Service Routines Reference 80 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

ansiToUnicode

Converts an 8-bit ANSI multi-byte character string into its Unicode equivalent.

Syntax unicodeString := ansiToUnicode (ansiString)

 Argument Data Type Access

ansiString Multi-byte character string Read

C++ Binding #include "Vernissage.h"

std::wstring Session::ansiToUnicode(std::string str);

Arguments ansiString
The 8-bit multi-byte character string to be converted into Unicode.

Description This routine converts a character string encoded as ANSI/ASCII 8-bit character
sequence into the corresponding Unicode wide-character equivalent.

This is a convenience routine for simplifying the management of string data.

Return Values Returns the wide-character Unicode-equivalent of the input character string.

Associated Routines unicodeToAnsi()

7. Service Routines Reference 81 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

clearMessages

Deletes the contents of the global message buffer.

Syntax clearMessages ()

C++ Binding #include "Vernissage.h"

void Session::clearMessages();

Arguments —

Description Vernissage provides a global message buffer that can be used by plug-in modules to
issue arbitrary messages to the user. The message buffer mechanism is most useful
for issuing error messages if a plug-in detects some problem that prevents it from
completing its operations successfully.

Calling clearMessages() will erase the entire global message buffer, i.e. all

messages will be deleted.

Return Values —

Associated Routines addMessage()

getMessages()

7. Service Routines Reference 82 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

closeOutputFile

Closes an output file created by a previous call to the createOutputFile service.

Syntax closeOutputFile (fileHandle)

 Argument Data Type Access

fileHandle Opaque reference Read/Modify

C++ Binding #include "Vernissage.h"

void Session::closeOutputFile(FILE **pHandle);

Arguments fileHandle
A pointer variable storing the address of an output file handle returned by a previous
call to createOutputFile().

Description This convenience routine closes an output file created by a previous call to the
createOutputFile() service.

After this routine has returned, the specified file handle must not be used for
accessing the file any longer.

Return Values —

Associated Routines createOutputFile()

7. Service Routines Reference 83 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

createDirectory

Creates a directory or sub-directory.

Syntax createDirectory (dirSpec, exceptionsFlag)

 Argument Data Type Access

dirSpec Wide-character string Read

exceptionsFlag Boolean Read

C++ Binding #include "Vernissage.h"

bool Session::createDirectory(std::wstring dirSpec,

 bool raiseExceptions = true);

Arguments dirSpec
An absolute or relative path specification determining the path to and the name of the
directory to be created.

exceptionsFlag
A flag indicating whether the service will raise exceptions if any error condition is
encountered.

Description This routine creates a new directory or sub-directory. The dirSpec argument
determines the path and name of the directory to be created and can contain a
Microsoft Windows absolute (e.g. "C:\Temp\NewDir") or relative (e.g. "..\..\NewDir")
path specification. If the path specification passed includes non-existing intermediate
directories these will be created also.

The createDirectory() service will return true if the directory or sub-directory

has been created. If the exceptionsFlag argument is set to false, the service will
return false if the directory creation procedure fails for some reason, however, the
calling module will receive no indication regarding the source of the error condition. If
the exceptionsFlag argument is set to true (which is the default), the
createDirectory() service will raise an exception of class IOException in

case of an error condition; you may provide a standard C++ exception handler
(catch block) for catching and processing the exception object.

I/O exception codes (stored in an exception object of type IOException) that can

occur are:

 ioerr_FileAlreadyExists — Raised if the dirSpec argument actually

refers to an existing file.

 ioerr_DirAlreadyExists — Raised if the specified directory already

exists.

 ioerr_UnableToCreate — Raised if the directory creation operation has

failed for some other reason.

Return Values True if the directory has been created, false otherwise.

Associated Routines createOutputFile()

7. Service Routines Reference 84 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

createOutputFile

Creates a text or binary file intended for output.

Syntax createOutputFile (fileSpec, binaryFlag, overwriteFlag, fileHandle, exceptionsFlag)

 Argument Data Type Access

fileSpec Wide-character string Read

binaryFlag Boolean Read

overwriteFlag Boolean Read

fileHandle Opaque reference Modify

exceptionsFlag Boolean Read

C++ Binding #include "Vernissage.h"

bool Session::createOutputFile(std::wstring fileSpec,

 bool isBinary,

 bool overwrite,

 FILE **pHandle,

 bool raiseExceptions = true);

Arguments fileSpec
An absolute or relative file specification determining the path to and the name of the
file to be created.

binaryFlag
A flag indicating whether the new file will store printable text (e.g. Unicode
characters) only, or any type of data.

overwriteFlag
A flag indicating whether an existing file with the same path/name shall be silently
overwritten.

fileHandle
A pointer variable for storing the address of an output file handle associated with the
new file.

exceptionsFlag
A flag indicating whether the service will raise exceptions if any error condition is
encountered.

Description This routine creates a new file and opens it for write access. The fileSpec argument
determines the path and name of the file to be created and can contain a Microsoft
Windows absolute (e.g. "C:\Temp\Out.txt") or relative (e.g. "..\..\Out.txt") path
specification.

If overwriteFlag is set to true and the specified file already exists, the existing file will
be overwritten if possible. When overwriteFlag is false and the specified file already
exists, the createOutputFile() routine will signal an error condition.

The type of data the new file can store is determined by the value of the binaryFlag
argument: If set to false, the new file will be capable of storing text data (Unicode
characters) only and certain control characters (such as "line feed") will be translated
into Microsoft Windows-compliant control sequences automatically. Set the
binaryFlag argument to false if the output file is intended for storing human-readable
data that can be processed with an arbitrary text editor. Set the binaryFlag argument
to true for creating an output file that can be used for storing arbitrary data, including
binary-encoded figures, control characters and other.

Upon successful completion, the createOutputFile() service will store the

address of a file descriptor representing the newly created file in a variable provided

7. Service Routines Reference 85 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

by the calling code. The fileHandle argument contains the address of this variable.

You may pass the file descriptor to standard routines for writing to the new file; for
C++, common routines include but are not limited to:

 fwprintf() for writing wide-character encoded text. This routine is also

useful for writing textual representations of binary data to the file.

 fputc() for writing an arbitrary character or data byte to the file.

 fputwc() for writing a wide-character encoded character to the file.

The createOutputFile() service will return true if the file has been created

and opened successfully. If the exceptionsFlag argument is set to false, the service
will return false if the file creation procedure fails for some reason, however, the
calling module will receive no indication regarding the source of the error condition. If
the exceptionsFlag argument is set to true (which is the default), the
createOutputFile() service will raise an exception of class IOException in

case of an error condition; you may provide a standard C++ exception handler
(catch block) for catching and processing the exception object.

I/O exception codes (stored in an exception object of type IOException) that can

occur are:

 ioerr_FileAlreadyExists — Raised if the specified file already exists

and the overwriteFlag argument has been set to false.

 ioerr_NoFileWritePermission — Raised if the specified file already

exists and the overwriteFlag argument has been set to true but the file access
permissions prevent the service from overwriting the file contents.

 ioerr_NoDirWritePermission — Raised if the access permissions of

the target directory prevent the service from creating a file.

 ioerr_NoSuchDirectory — Raised if the specified file path is invalid, i.e.

includes a directory that does not exist.

 ioerr_UnableToCreate — Raised if the file creation operation has failed

for some other reason.

Use the closeOutputFile() service for closing a file that has been created and

opened by this routine.

Return Values True if the file has been created and opened for write access successfully, false
otherwise.

Associated Routines closeOutputFile()

createDirectory()

7. Service Routines Reference 86 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

directoryExists

Determines whether a specific directory already exists.

Syntax status := directoryExists (dirSpec)

 Argument Data Type Access

dirSpec Wide-character string Read

C++ Binding #include "Vernissage.h"

bool Session::directoryExists(std::wstring dirSpec);

Arguments dirSpec
An absolute or relative path specification determining the path to and the name of the
directory.

Description This routine checks whether the specified directory exists, i.e. is known at the file
system-level.

The dirSpec argument determines the path and name of the directory to be checked
and can contain a Microsoft Windows absolute (e.g. "C:\Temp\ThisDir") or relative
(e.g. "..\..\ThisDir") path specification.

Return Values Returns true if the specified directory exists, false otherwise.

Associated Routines createDirectory()

7. Service Routines Reference 87 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

eraseResultSets

Erases all result sets currently loaded from the internal database.

Syntax eraseResultSets ()

C++ Binding #include "Vernissage.h"

void Session::eraseResultSets();

Arguments —

Description This routine erases the entire internal result set database of the Vernissage software
and thus reverses any previous call to the loadResultSet() and

loadAllResultSets() functions. When this routine returns, all Bricklet

descriptions have bee removed.

This routine is only useful for special third party applications managing result sets in
their own context.

Return Values —

Associated Routines loadResultSet()

loadAllResultSets()

loadBrickletContents()

unloadBrickletContents()

7. Service Routines Reference 88 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getAxisClocks

Returns the number of clocks configured for the trigger axis of a Bricklet.

Syntax count := getAxisClocks (bricklet, axisName)

 Argument Data Type Access

bricklet Opaque reference Read

axisName Wide-character string Read

C++ Binding #include "Vernissage.h"

int Session::getAxisClocks(void *pBricklet,

 std::wstring axisName);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

axisName
The name of the axis to be queried; both plain and qualified axis names are
supported.

Description This routine returns the number of clocks configured for the specified axis associated
with the data channel through which a particular Bricklet was acquired.

If the specified axis is the trigger axis of the channel through which the Bricklet
passed has been acquired, the number of clocks returned would e.g. be identical to
the number of data points on a curve (one-dimensional Bricklets), or the number of
data acquisition points on a scan line (for Bricklets generated during a spatial scan
operation).

Note, however, that the number of clocks returned is twice the number originally
entered by the user if the specified axis is mirrored; you can use the
getAxisDescriptor() service routine to verify whether an axis has been

assigned the mirrored characteristic.

If the axis name passed to this function does not exist or is not part of the axis
hierarchy associated with the specified Bricklet, the returned value is unpredictable.

Return Values Returns the number of clocks configured for the specified axis.

Associated Routines getAxisUnit()

getTriggerAxisName()

getTriggerAxisQualifiedName()

getRootAxisName()

getRootAxisQualifiedName()

getAxisDescriptor()

getAxisTableSets()

7. Service Routines Reference 89 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getAxisDescriptor

Returns the configuration description of an axis.

Syntax axisConfiguration := getAxisDescriptor (bricklet, axisName)

 Argument Data Type Access

bricklet Opaque reference Read

axisName Wide-character string Read

C++ Binding #include "Vernissage.h"

struct AxisDescriptor {

 int rawStart;

 int rawIncrement;

 double physicalStart;

 double physicalIncrement;

 std::wstring physicalUnit;

 bool mirrored;

 int clocks;

 std::wstring triggerAxisName;

};

AxisDescriptor getAxisDescriptor(void *pBricklet,

 std::wstring axisName);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

axisName
The name of the axis to be queried; both plain and qualified axis names are
supported.

Description This routine returns the configuration of the specified axis, including its raw and
physical start value and increment, the physical unit, the number of clock positions
and the name of the triggering axis (if any).

Together with the getAxisTableSets() service, this routine can be used to

determine all details on the configuration of a particular axis.

If the axis name passed to getAxisDescriptor() does not exist or is not part

of the axis hierarchy associated with the specified Bricklet, the results of calling this
routine are unpredictable.

Return Values Returns information on the configuration of the specified axis. The data structure
returned consists of the following entries:

 rawStart — The start value of the axis, expressed as raw device value.

 rawIncrement — The increment between two clock positions on the axis,
expressed as raw device value.

 physicalStart — The start value of the axis, expressed as physical value.

 physicalIncrement — The increment between two clock positions, expressed as
physical value.

 physicalUnit — The name of the unit used by physicalStart and
physicalIncrement. See section Data Types and Formats for a list of supported
unit names.

 mirrored — Flag indicating whether the axis has been assigned the mirrored
characteristic. In this case, clocks specifies twice the number of clock positions
the user has originally configured; the end value of the axis is thus physicalStart
+ (clocks / 2 – 1) • physicalIncrement.

 clocks — The number of clock positions on the axis.

7. Service Routines Reference 90 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

If mirrored is false, the end value of the axis can be computed as follows:
physicalStart + (clocks – 1) • physicalIncrement.

 triggerAxisName — The name of the triggering axis. If the axis passed to
getAxisDescriptor() is a root axis, this field will contain an empty

character string.

Associated Routines getAxisClocks()

getAxisUnit()

getTriggerAxisName()

getTriggerAxisQualifiedName()

getRootAxisName()

getRootAxisQualifiedName()

getAxisTableSets()

7. Service Routines Reference 91 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getAxisParameter

Returns information on the value of a particular axis parameter.

Syntax valueDescriptor := getAxisParameter (bricklet, axisName, parameterName)

 Argument Data Type Access

bricklet Opaque refererence Read

axisName Wide-character string Read

parameterName Wide-character string Read

C++ Binding #include "Vernissage.h"

struct Parameter {

 enum ValueType {

 vt_Special, vt_Integer, vt_Double,

 vt_Boolean, vt_Enum, vt_String

 } valueType;

 std::wstring unit;

 std::wstring value;

};

Parameter getAxisParameter(void *pBricklet,

 std::wstring axisName,

 std::wstring parameterName);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

axisName
The name of the axis to be queried; both plain and qualified axis names are
supported.

parameterName
The name of the axis parameter of which information shall be returned.

Description This routine can be used for retrieving the value of an axis parameter associated with
the axis specified by the plain or qualified name passed. The information returned will
refer to the parameter value at the time a particular Bricklet (passed as first
argument) was created.

The getAxisParameter() service routine will create a value descriptor including
the actual parameter value represented as a character string, a type code identifying
the value type and a unit name.

If the axis name passed refers to a non-existing axis, or an axis that is not associated
with the Bricklet passed as first argument, or if the specified parameter does not exist
or is not associated with the specified axis, the contents of the value descriptor
returned by this function are unpredictable.

See section Axis Parameters on page 42 for more information on axis parameters.

Return Values Returns a data structure consisting of the following entries:

 valueType — An enumeration type code denoting the type of the value. The
character string stored in field value represents a data item of this type.

 unit — The name of the SI unit of the parameter value. See section Data
Types and Formats on page 37 for more information on supported units.

 value — The parameter value, represented as character string.

Associated Routines getAxisParameters()

7. Service Routines Reference 92 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getAxisParameters

Returns information on all axis parameter values of an axis at Bricklet creation time.

Syntax valueDescriptors := getAxisParameters (bricklet, axisName)

 Argument Data Type Access

bricklet Opaque refererence Read

axisName Wide-character string Read

C++ Binding #include "Vernissage.h"

struct Parameter {

 enum ValueType {

 vt_Special, vt_Integer, vt_Double,

 vt_Boolean, vt_Enum, vt_String

 } valueType;

 std::wstring unit;

 std::wstring value;

};

std::map<std::wstring, Parameter> getAxisParameters(void

*pBricklet,

std::wstring axisName

);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

axisName
The name of the axis to be queried; both plain and qualified axis names are
supported.

Description This routine can be used for retrieving information on all axis parameters associated
with the axis specified by the plain or qualified name passed. The information
returned will refer to the parameter values at the time a particular Bricklet (passed as
first argument) was created.

The getAxisParameters() service routine will create a collection of value
descriptors including the actual parameter value represented as a character string, a
type code identifying the value type and a unit name.

If the axis name passed refers to an axis that has no associated axis parameters, an
empty collection will be returned.

If the axis name passed refers to a non-existing axis, or an axis that is not associated
with the Bricklet passed as first argument, the contents of the value descriptor
returned by this function are unpredictable.

See section Axis Parameters on page 42 for more information on axis parameters.

Return Values Returns a collection of value descriptors representing the axis parameter values of an
axis at Bricklet creation time. The collection uses the parameter name as key for the
respective value descriptor. The value descriptor itself consists of the following
entries:

 valueType — An enumeration type code denoting the type of the value. The
character string stored in field value represents a data item of this type.

 unit — The name of the SI unit of the parameter value. See section Data
Types and Formats on page 37 for more information on supported units.

 value — The parameter value, represented as character string.

Associated Routines getAxisParameter()

7. Service Routines Reference 93 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getAxisTableSets

Returns a list of all table sets associated with an axis.

Syntax tableSets := getAxisTableSets (bricklet, axisName)

 Argument Data Type Access

bricklet Opaque reference Read

axisName Wide-character string Read

C++ Binding #include "Vernissage.h"

struct IntervalDescriptor {

 int start, stop, step;

};

typedef std::vector<IntervalDescriptor> TableSet;

typedef std::map<std::wstring, TableSet> AxisTableSets;

AxisTableSets getAxisTableSets(void *pBricklet,

 std::wstring axisName);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

axisName
The name of the axis to be queried; both plain and qualified axis names are
supported.

Description This routine returns all table sets being associated with the specified axis; the axis
must be part of the axis hierarchy that is associated with the data channel through
which the specified Bricklet has been acquired.

getAxisTableSets() will check the entire axis hierarchy for axes that directly or
indirectly trigger the specified axis and return all relevant table sets.

Each table set consists of a list of interval description structures (storing the start and
end values of the interval and the increment), getAxisTableSets() will return a
separate interval description list for each trigger axis.

Return Values Returns a collection of table sets, ordered by trigger axis. If the specified axis is the
root axis, an empty collection will be returned. If no trigger axis has defined a table
set, an empty collection is returned also.

Associated Routines getAxisClocks()

getAxisUnit()

getTriggerAxisName()

getTriggerAxisQualifiedName()

getRootAxisName()

getRootAxisQualifiedName()

getAxisDescriptor()

7. Service Routines Reference 94 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getAxisUnit

Returns the name of the physical unit associated with an axis.

Syntax unit := getAxisUnit (bricklet, axisName)

 Argument Data Type Access

bricklet Opaque reference Read

axisName Wide-character string Read

C++ Binding #include "Vernissage.h"

std::wstring Session::getAxisUnit(void *pBricklet,

 std::wstring axisName);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

axisName
The name of the axis to be queried; both plain and qualified axis names are
supported.

Description This routine returns the name of the SI unit associated with an axis. The specified
axis must be part of the axis hierarchy that is associated with the data channel
through which the specified Bricklet has been acquired.

For example, the axis unit of the Y- and X-axis being associated with channels
delivering topography (and similar) data use "Meter" as physical unit, while an SPM
spectroscopy axis V will use "Volt".

Return Values Returns a character string representing the unit name of an axis associated with a
particular data channel. The channel is determined by the specified Bricklet.

See section Data Types and Formats for a list of supported unit names.

Associated Routines getAxisClocks()

getTriggerAxisName()

getTriggerAxisQualifiedName()

getRootAxisName()

getRootAxisQualifiedName()

getAxisDescriptor()

getAxisTableSets()

7. Service Routines Reference 95 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getBrickletCount

Returns the total number of Bricklets currently loaded.

Syntax count := getBrickletCount ()

C++ Binding #include "Vernissage.h"

int Session::getBrickletCount();

Arguments —

Description This routine returns the total number of Bricklets currently loaded, i.e. the number of
Bricklets encountered in all result files read by Vernissage during a particular session.

Return Values Returns the total number Bricklets loaded. If no result file has yet been read, this
routine will return 0.

Associated Routines getNextBricklet()

7. Service Routines Reference 96 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getBrickletDataItemCount

Returns the number of raw data items a Bricklet contains.

Syntax count := getBrickletDataItemCount (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

int Session::getBrickletDataItemCount(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the actual number of raw values the specified Bricklet stores.

The number returned will be identical to the item count information returned by
means of the count argument in a call to loadBrickletContents().

Return Values Returns an integer figure representing the number of raw values.

Associated Routines loadBrickletContents()

7. Service Routines Reference 97 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getCalibrationInformation

Retrieves the calibration options for the instrument(s)

Syntax calibrationInfo := getCalibrationInformation(bricklet [, instrumentName])

 Argument Data Type Access

bricklet Opaque reference Read

instrumentName Wide-character string Read

C++ Binding
#include "Vernissage.h"

struct CalibrationInfo

{

 std::wstring dataSet;

 std::wstring dataSetVariant;

 std::wstring parameterSet;

 std::wstring parameterSetVariant;

};

std::map<std::wstring, Session::CalibrationInfo>

 getCalibrationInformation (

 void *pBricklet,

 std::wstring instrumentName = L"");

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

instrumentName
The (optional) name of the instrument to be queried.

Description This routine can be used for retrieving the calibration options for the instrument – or
in case of TwoProbe or NanoProbe the calibration options for all instruments that
were active when the particular Bricklet was created.

By specifying a valid instrument name (such as “Tip1”, “Tip2”, “Tip3”, “Tip4”,) as
argument instrumentName, the service routine will be directed to return only the
calibration for the given instrument.

The instrument name is part of the qualified axis name, e.g. You can find out, which
instrument recorded the bricklet in hand by a call of either
getTriggerAxisQualifiedName(bricklet) or getRootAxisQualifiedName(bricklet).

Note: You only get the name of the selected Data Set, Parameter Set, and Parameter
Set Variant. The Data Set Variant is currently not used

Return Values Returns the calibration options for the given instrument or for all instruments.

The calibration options for one instruments consist of the following entries:

 dataSet – name of data set

 dataSetVariant – (reserved for future usage)

 parameterSet – name of the parameter set

 parameterSetVariant – name of the parameter set variant

Associated Routines

7. Service Routines Reference 98 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getChannelGroupName

Returns the group name of the data channel through which the data of a Bricklet was acquired.

Syntax name := getChannelGroupName (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::wstring Session::getChannelGroupName(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the group name of the data channel through which the data of a
particular Bricklet has been acquired.

In case of virtual channels (in ESpec) the channel name is constructed as:
<ChannelGroupNameBase>[.<VirtExt>]

Return Values Returns a character string representing group name of the data channel through
which the data contained by the specified Bricklet was acquired.

Associated Routines getChannelInstanceName()

getChannelName()

getChannelUnit()

7. Service Routines Reference 99 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getChannelInstanceName

Returns the Experiment Element instance name of the data channel from which a Bricklet originated.

Syntax name := getChannelInstanceName (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::wstring Session::getChannelInstanceName(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the instance name of the Experiment Element a Bricklet
originated at. Currently, this will either be the instance name of an element of type
Channel or of type Detector.

Return Values Returns a character string representing the Experiment Element instance name of the
data channel at which the specified Bricklet originated.

Associated Routines getChannelName()

getChannelUnit()

7. Service Routines Reference 100 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getChannelName

Returns the logical name of the data channel through which the data of a Bricklet was acquired.

Syntax name := getChannelName (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::wstring Session::getChannelName(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the logical name of the data channel through which the data for a
particular Bricklet has been acquired.

The logical name of a channel is often not identical to the instance name of its
Experiment Element, for example, the logical name of a channel may be "I(V) " while
the respective Experiment Element instance name is "I_V ".

The logical name of a channel is specified by the deployment parameter Name of its

Experiment Element instance.

Return Values Returns a character string representing the logical name of the data channel through
which the data contained by the specified Bricklet was acquired.

Associated Routines getChannelInstanceName()

getChannelUnit()

7. Service Routines Reference 101 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getChannelRawMax

Returns the maximum raw value supported by the data channel through which the specified Bricklet was
acquired.

Syntax rawMaximum := getChannelRawMax (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

int Session::getChannelRawMax(void *pBricklet);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the maximum raw value supported by a data channel; the
channel is identified by a Bricklet that it has acquired.

Return Values Returns the minimum raw value supported by the data channel associated with the
specified Bricklet. Usually, this will be +2,147,483,647 (–231 – 1), as most MATRIX
channels are 32-bit wide.

Associated Routines getChannelRawMin()

getRawMin(),

getRawMax()

toPhysical()

toRaw()

7. Service Routines Reference 102 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getChannelRawMin

Returns the minimum raw value supported by the data channel through which the specified Bricklet was
acquired.

Syntax rawMinimum := getChannelRawMin (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

int Session::getChannelRawMin(void *pBricklet);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the minimum raw value supported by a data channel; the channel
is identified by a Bricklet that it has acquired.

Return Values Returns the minimum raw value supported by the data channel associated with the
specified Bricklet. Usually, this will be –2,147,483,648 (–231), as most MATRIX
channels are 32-bit wide.

Associated Routines getChannelRawMax()

getRawMin(),

getRawMax()

toPhysical()

toRaw()

7. Service Routines Reference 103 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getChannelUnit

Returns the unit name of the data acquired through a particular data channel.

Syntax unit := getChannelUnit (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::wstring Session::getChannelUnit(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the name of the SI unit associated with the data contained by a
Bricklet. (Because the data of a Bricklet has been acquired through a specific
channel, the unit name returned is also a characteristic of the respective data
channel.)

As Bricklets always store raw data (i.e. data that has not been transformed from its
hardware representation into physical quantities), the unit name returned by a call to
getChannelUnit() actually specifies the physical unit of the raw data after

transformation.

Return Values Returns a character string representing the unit name of the data acquired through a
particular data channel. The channel is determined by the specified Bricklet.

See section Data Types and Formats for a list of supported unit names.

Associated Routines getChannelInstanceName()

getChannelName()

7. Service Routines Reference 104 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getCreationComment

Returns the user’s creation comment associated with a particular Bricklet.

Syntax comment := getCreationComment (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::wstring Session::getCreationComment(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description The MATRIX result file format supports arbitrary user comments that can be stored at
any time. Such comments are useful for providing short notes on the experiment set-
up, details regarding the experiment execution, or other information.

The getCreationComment() service obtains the active result set comment

when the specified Bricklet was created, i.e. the most recent comment entered by the
user at the time the Bricklet was saved to disk. (Data-specific comments can be
inquired by means of the getDataComments() service.)

Return Values Returns a character sequence representing the creation comment specified by the
user during experiment execution. If no comment was entered, a dash character ('-')
will be returned.

Associated Routines getCreationTimestamp()

getSampleName()

getDataSetName()

getDataComments()

7. Service Routines Reference 105 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getCreationTimestamp

Returns the date and time at which a specific Bricklet was acquired.

Syntax dateTime := getCreationTimestamp (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

struct tm Session::getCreationTimestamp(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description The getCreationTimestamp() service returns the date and time when the

specified Bricklet was created, i.e. when the contents of the Bricklet were saved to
disk. In other words, the service will return the date and time when the acquisition
cycle that has produced the Bricklet was finished (not when it was started.)

Return Values Returns the date and time of the creation of the Bricklet specified as argument, i.e.
the date and time when the Bricklet data were being written to disk.

In case of the C++ binding, the date and time is returned by means of a structure of

type tm as specified by the standard C header file <ctime> (or <time.h>,

respectively.)

The date/time conversion run by the service is locale-aware, i.e. the date and time
returned will reflect the Bricklet creation date/time with respect to the time zone,
daylight saving time settings and similar information of the computer the Vernissage
software is executing on.

Associated Routines getCreationComment()

7. Service Routines Reference 106 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getDataComments

Returns the Bricklet-specific comments entered by the MATRIX user.

Syntax dataComments := getDataComments (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::vector<std::wstring> getDataComments(

 void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns a list of character strings representing the data comments the
user entered for a specific Bricklet during a MATRIX session. Data comments can be
registered by means of the graphical user interface of MATRIX by right-clicking a
data display and selecting "Enter comment…" from the context menu.

In contrast to the creation comment that applies to all Bricklets of an experiment run
(until a new creation comment is entered), a data comment is attached to a particular
Bricklet only. In addition, an arbitrary number of data comments can be associated
with a single Bricklet.

Return Values Returns a list of character strings, each string represents a data comment entered by
the MATRIX user. If no data comment was entered, an empty list will be returned.

Associated Routines getCreationComment()

getSampleName()

getDataSetName()

7. Service Routines Reference 107 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getDataSetName

Returns the data set name associated with a particular Bricklet.

Syntax name := getDataSetName (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::wstring getDataSetName(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the data set name that was in effect when the Bricklet passed
was created. (The data set name is an arbitrary character string that can help users
identify a number of result data sets as related.)

Return Values Returns the data set name associated with the specified Bricklet. If the MATRIX user
specified no data set name, a single dash character ('–') will be returned.

Associated Routines getCreationComment()

getDataComments()

getSampleName()

7. Service Routines Reference 108 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getDependingBricklets

Returns a list of Bricklets that have a "depends-on" relationship to a specific Bricklet.

Syntax bricklets := getDependingBricklets (bricklet, filterSet)

 Argument Data Type Access

bricklet Opaque reference Read

filterSet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::vector<void *> Session::getDependingBricklets(

 void *pBricklet, void *pFilterSet = 0);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

filterSet
The filter set passed to the run() method of the plug-in, or a null pointer. If a null

pointer is passed, the list returned will contain all related Bricklets. Passing a filter set
will cause the function to return only related Bricklets that are part of the filter set, i.e.
that are subject to an export operation.

Description This routine returns a list of Bricklets that have a "depends-on" relationship to the
Bricklet passed as argument bricklet. An example for a "depends-on" relationship is a
single point spectroscopy (SPS) curve depending on an SPM image because any
SPS curve is associated with a particular sample location.

Please note that the getDependingBricklets() function can either return all

Bricklets related to the specified Bricklet (if a null pointer is passed as argument
filterSet), or only Bricklets that are subject to an export operation (if a pointer to a filter
set data structure is passed as argument filterSet).

Please see section Related Bricklets for more information on Bricklet relationships.

Return Values Returns a list of opaque pointers to Bricklets that have a "depends-on" relationship to
the Bricklet passed to the routine. If the specified Bricklet has no dependant Bricklets,
the returned list will be empty.

Associated Routines getReferencedBricklets()

getSucessorBricklet()

getPredecessorBricklet()

7. Service Routines Reference 109 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getDimensionCount

Returns the dimensionality of the data contained by a Bricklet.

Syntax count := getDimensionCount (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

int Session::getDimensionCount(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the dimensionality of the data contained by a Bricklet.

MATRIX supports experiment set-ups generating arbitrary (i.e. n-dimensional) data
spaces, hence it is important to know the dimensionality of the data a particular
Bricklet contains in order to process it.

Return Values Returns an unsigned integer figure indicating the dimensionality of the data contained
by the specified Bricklet: "1" indicates one-dimensional data, i.e. a curve. "2" means
that the respective Bricklet contains two-dimensional data, such as topography
images, tunnelling current images, or similar. A return value of "3" indicates three-
dimensional data such as a volume CITS cube resulting from a grid spectroscopy
experiment; data from imaging XPS experiments is actually four-dimensional, hence
the return value will be "4" for such Bricklets.

Associated Routines getViewTypes()

getType()

7. Service Routines Reference 110 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getExperimentElementDeploymentParameter

Returns the value of a deployment parameter of an Experiment Element instance.

Syntax value := getExperimentElementDeploymentParameter (

 bricklet, instanceName, parameterName)

 Argument Data Type Access

bricklet Opaque reference Read

instanceName Wide-character string Read

parameterName Wide-character string Read

C++ Binding #include "Vernissage.h"

std::wstring Session::getExperimentElementDeploymentParameter(

 void *pBricklet,

 std::wstring instanceName,

 std::wstring parameterName);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

instanceName
The name of an Experiment Element instance to be queried.

parameterName
The name of a deployment parameter supported by the respective Experiment
Element instance.

Description This routine can be used for retrieving the value of a deployment parameter used for
deploying a specific Experiment Element instance. The Experiment Element instance
must be a member of the experiment that has produced a particular Bricklet; a
reference to this Bricklet must be passed to the routine as first argument.

Note that an Experiment Element deployment parameter is "typeless", i.e. its value
will always be a character string.

Return Values Returns the value of the specified deployment parameter of the Experiment Element
instance with the instance name passed as second argument.

If the instance name does not refer to an existing Experiment Element instance, or
the specified deployment parameter name is not known for the element instance, an
empty string will be returned.

Associated Routines getExperimentElementParameter()

getExperimentElementParameters()

getExperimentElementInstanceNames()

getExperimentElementDeploymentParameters()

7. Service Routines Reference 111 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getExperimentElementDeploymentParameters

Returns a list of deployment parameters and their respective values of an Experiment Element instance.

Syntax parameters := getExperimentElementDeploymentParameters (

 bricklet, instanceName)

 Argument Data Type Access

bricklet Opaque refererence Read

instanceName Wide-character string Read

C++ Binding #include "Vernissage.h"

std::map<std::wstring, std::wstring>

 getExperimentElementDeploymentParameters(void *pBricklet,

 std::wstring instanceName);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

instanceName
The name of the Experiment Element instance to be queried.

Description This routine can be used for retrieving all parameters and their associated values
used for deploying a specific Experiment Element instance. The Experiment Element
instance must be a member of the experiment that has produced a particular Bricklet;
a reference to this Bricklet must be passed to the routine as first argument.

Note that all Experiment Element deployment parameters are "typeless", i.e. their
values will always be character strings.

Return Values Returns a collection of character strings representing the deployment parameters and
their associated values. The collection uses the name of the deployment parameter
as a key for the respective parameter value.

Associated Routines getExperimentElementDeploymentParameter()

getExperimentElementParameter()

getExperimentElementParameters()

getExperimentElementInstanceNames()

7. Service Routines Reference 112 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getExperimentElementInstanceNames

Returns a list of Experiment Element instance names in use when a particular Bricklet was created.

Syntax names := getExperimentElementInstanceNames (bricklet, typeName [, catalogName])

 Argument Data Type Access

bricklet Opaque reference Read

typeName Wide-character string Read

C++ Binding #include "Vernissage.h"

std::vector<std::wstring> getExperimentElementInstanceNames(

 void *pBricklet,

 std::wstring typeName,

 std::wstring catalogName = L"");

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

typeName
The name of an Experiment Element type.

catalogName
The (optional) name of the Experiment Element catalogue to be used.

Description This routine determines all Experiment Element instances utilised by the experiment
during which the specified Bricklet was created and returns their instance names.

By specifying a valid Experiment Element type name (such as XYScanner or Channel) as
argument typeName, the service routine will be directed to return only the names of
Experiment Element instances that match the given type.

In addition, you may use the optional third parameter catalogName to specify the name
of an existing Experiment Element catalogue. If a catalogue name has been specified,
the routine will only return the instance names of Experiment Elements from the
respective catalogue.

See section Understanding MATRIX Experiments for more information on Experiment
Elements.

Return Values Returns a collection of character sequences describing the names of Experiment
Element instances matching the query. If typeName is an empty string and
catalogName has been omitted, the names of all Experiment Element instances utilised
by an experiment will be returned.

If typeName specifies an unsupported Experiment Element type, or the name of an
Experiment Element type not used by the respective experiment, an empty collection will
be returned. Similarly, if catalogName specifies an unsupported Experiment Element
catalogue, or the name of an Experiment Element catalogue not used by the respective
experiment, an empty collection will result.

Associated Routines getExperimentElementDeploymentParameter()

getExperimentElementDeploymentParameters()

7. Service Routines Reference 113 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getExperimentElementParameter

Returns information on the value of an Experiment Element instance parameter at Bricklet creation time.

Syntax valueDescriptor := getExperimentElementParameter (

 bricklet, instanceName, parameterName)

 Argument Data Type Access

bricklet Opaque reference Read

instanceName Wide-character string Read

parameterName Wide-character string Read

C++ Binding #include "Vernissage.h"

struct Parameter {

 enum ValueType {

 vt_Special, vt_Integer, vt_Double,

 vt_Boolean, vt_Enum, vt_String

 } valueType;

 std::wstring unit;

 std::wstring value;

};

Parameter Session::getExperimentElementParameter(

 void *pBricklet,

 std::wstring instanceName,

 std::wstring parameterName);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

instanceName
The name of an Experiment Element instance to be queried.

parameterName
The name of an instance parameter supported by the respective Experiment Element
type.

Description This routine can be used for retrieving information about a parameter of an
Experiment Element instance. The routine will return information about the value of
that parameter at the time a particular Bricklet (passed as first argument) was
created.

The getExperimentElementParameter() service will create a value

descriptor including the actual parameter value represented as a character string, a
type code identifying the value type and a unit name.

If the instance name passed refers to a non-existing Experiment Element instance, or
the parameter name refers to a parameter not supported by the respective
Experiment Element type, the results of calling this routine are unpredictable.

Return Values Returns a data structure consisting of the following entries:

 valueType — An enumeration type code denoting the type of the value. The
character string stored in field value represents a data item of this type.

 unit — The name of the SI unit of the parameter value. See section Data Types
and Formats for more information on supported units.

 value — The parameter value, represented as character string. (For example
"1.2e–9", "true", etc.)

Associated Routines getExperimentElementDeploymentParameter()

getExperimentElementParameters()

7. Service Routines Reference 114 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getExperimentElementParameters

Returns information on all parameter values of an Experiment Element instance at Bricklet creation time.

Syntax valueDescriptors := getExperimentElementParameters (

 bricklet, instanceName)

 Argument Data Type Access

bricklet Opaque reference Read

instanceName Wide-character string Read

C++ Binding #include "Vernissage.h"

struct Parameter {

 enum ValueType {

 vt_Special, vt_Integer, vt_Double,

 vt_Boolean, vt_Enum, vt_String

 } valueType;

 std::wstring unit;

 std::wstring value;

};

std::map<std::wstring, Parameter>

 Session::getExperimentElementParameters(

 void *pBricklet,

 std::wstring instanceName,

);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

instanceName
The name of an Experiment Element instance to be queried.

Description This routine can be used for retrieving information on all parameters of an Experiment
Element instance. The routine will return information about the parameter values at
the time a particular Bricklet (passed as first argument) was created.

The getExperimentElementParameters() service will create a collection of

value descriptors including the actual parameter value represented as a character
string, a type code identifying the value type and a unit name.

If the instance name passed refers to a non-existing Experiment Element instance,
getExperimentElementParameters()will return an empty collection.

Return Values Returns a collection of value descriptors representing the parameter values of an
Experiment Element instance at Bricklet creation time. The collection uses the
parameter name as key for the respective value descriptor. The value descriptor itself
consists of the following entries:

 valueType — An enumeration type code denoting the type of the value. The
character string stored in field value represents a data item of this type.

 unit — The name of the SI unit of the parameter value. See section Data Types
and Formats for more information on supported units.

 value — The parameter value, represented as character string. (For example
"1.2e–9", "true", etc.)

Associated Routines getExperimentElementDeploymentParameter()

getExperimentElementParameter()

7. Service Routines Reference 115 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getExperimentInfo

Returns information about the experiment that has produced a particular Bricklet.

Syntax experimentInfo := getExperimentInfo (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

struct ExperimentInfo {

 std::wstring experimentName;

 std::wstring experimentVersion;

 std::wstring experimentDescription;

 std::wstring experimentFileSpec;

 std::wstring projectName;

 std::wstring projectVersion;

 std::wstring projectFileSpec;

};

ExperimentInfo Session::getExperimentInfo(void *pBricklet);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns information about the experiment that has produced a particular
Bricklet, including the experiment name, its version identifier and the file specification
of the experiment’s description file.

Because MATRIX organises experiments into Projects, the name of the Project
containing the respective experiment, the Project’s version identifier and the file
specification of the Project description file are also returned.

Return Values Returns an experiment information data structure comprising the following entries:

 experimentName — The original name of the experiment (for example
"STM_Spectroscopy").

 experimentVersion — The experiment version identifier.

 experimentDescription — A short text describing the experiment, as provided by
the experiment author.

 experimentFileSpec — The full file specification of the original experiment
description file.

 projectName — The name of the MATRIX Project containing the experiment.

 projectVersion — The Project’s version identifier.

 projectFileSpec — The full file specification of the Project description file.

Associated Routines getMetaData()

7. Service Routines Reference 116 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getMessages

Returns the contents of the global message buffer.

Syntax messages := getMessages ()

C++ Binding #include "Vernissage.h"

std::vector<std::wstring> Session::getMessages() const;

Arguments —

Description Vernissage provides a global message buffer that can be used by plug-in modules to
issue arbitrary messages to the user. The message buffer mechanism is most useful
for issuing error messages if a plug-in detects some problem that prevents it from
completing its operations successfully.

Calling getMessages() will return the current contents of the global message

buffer. The contents of the message buffer will not be modified.

This routine is only useful for special third party applications that need to display
messages issued by plug-ins.

Return Values Returns a collection of messages that have been stored in the global message buffer.
If the buffer is currently empty, an empty collection is returned.

Associated Routines addMessage()

clearMessages()

7. Service Routines Reference 117 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getMetaData

Returns the creation meta data of a Bricklet.

Syntax brickletMetaData := getMetaData (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

struct BrickletMetaData {

 std::wstring fileCreatorName;

 std::wstring fileCreatorVersion;

 std::wstring userName;

 std::wstring accountName;

};

BrickletMetaData Session::getMetaData(void *pBricklet);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

Description The getMetaData() service returns the "creation meta data" associated with a

particular Bricklet. (More precisely, the creation meta data of the result file chain a
Bricklet is associated with.)

The creation meta data comprises name and version identifier of the software product
that has originally created the result file (and hence also the Bricklet) as well as
information about the user accounts being utilised for running the experiment that
has produced the Bricklet.

Return Values Returns a data structure containing the creation meta data associated with the
specified Bricklet. This structure consists of the following entries:

 fileCreatorName — The name of the software product that has created the result
file associated with the Bricklet.

 fileCreatorVersion — The version identifier of the result file creator.

 userName — The (MATRIX) user name of the user who has run the experiment
that produced the Bricklet. (Usually, this name will be "default".)

 accountName — The Microsoft Windows account name of the user who has run
the experiment that produced the Bricklet.

Associated Routines getExperimentInfo()

7. Service Routines Reference 118 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getNextBricklet

Returns the next Bricklet from the set of Bricklets currently loaded. Each call will retrieve a single Bricklet.

Syntax bricklet := getNextBricklet (context, filterSet)

 Argument Data Type Access

context Opaque reference Read/Modify

filterSet Opaque reference Read

C++ Binding #include "Vernissage.h"

void* Session::getNextBricklet(void **pContext,

void *pFilterSet = 0);

Arguments context
An opaque pointer variable into which the routine stores a context value for use by
future calls to getNextBricklet() or releaseBrickletContext(). The

context argument is the address of a pointer variable containing the address of the
context. This pointer variable must be set to zero before the first call to
getNextBricklet(). You can use the same context argument from one

getNextBricklet() call to another provided you have not called

releaseBrickletContext() for that context first. getNextBricklet()

uses this argument to retain the context between subsequent calls.

You must not change the value of context in subsequent calls to
getNextBricklet().

filterSet
An opaque pointer to the filter set data structure passed to the run() method of the

plug-in, or a null pointer. Provide a pointer to the filter set data structure for restricting
the iteration process to the Bricklets that have been selected for export by the user.
Specify a null pointer for iterating through all Bricklets currently loaded.

Description This routine allows iterating through the set of Bricklets currently loaded. Upon each
call, a pointer to an opaque Bricklet descriptor structure is returned; this pointer can
then be passed to other service routines in order to access the Bricklet contents or to
inquire information about the Bricklet.

The service will return the Bricklets by result set, i.e. if several result sets have been
loaded, the Bricklets from the first set will be passed before the Bricklets from the
second set. The order in which the service processes the result sets is unpredictable.

Bricklets from a particular result set will always be returned in the order they were
created, i.e. in chronological order with the oldest Bricklet returned first.

When the last Bricklet from the set has been returned, a subsequent call to
getNextBricklet() will return a null pointer. A further call with the same

context argument will restart the iteration sequence.

Use releaseBrickletContext() for terminating an iteration sequence and

for resetting the context parameter.

Return Values Returns an opaque pointer to a Bricklet descriptor structure. This pointer cannot be
used for referencing information directly, however, it can be passed to various
information query services.

This routine returns a null pointer if the last Bricklet has already been returned by the
preceding call to getNextBricklet().

Associated Routines releaseBrickletContext()

getBrickletCount()

7. Service Routines Reference 119 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getParentResultFileSpec

Returns the file specification of the parent result file of a Bricklet.

Syntax fileSpec := getParentResultFileSpec (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::wstring Session::getParentResultFileSpec(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the file specification of the result file being associated with a
particular Bricklet. As each Bricklet is actually referenced by a result file, there is
always a parent result file.

The service routine will return the file specification of the first result file of a particular
result file chain (the first result file of a chain has a name ending on "_0001.mtrx"),
even if the specified Bricklet is referenced from another result file of the same result
file chain.

Return Values Returns the full file specification of the result file associated with the specified
Bricklet, including drive identification letter and directory hierarchy.

Associated Routines getResultDataFileSpec()

7. Service Routines Reference 120 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getPlainAxisName

Returns the "plain" part of an axis name.

Syntax name := getPlainAxisName (qualifiedAxisName)

 Argument Data Type Access

qualifiedAxisName Wide-character string Read

C++ Binding #include "Vernissage.h"

std::wstring getPlainAxisName (std::wstring qualifiedAxisName);

Arguments qualifiedAxisName
The qualified axis name to be processed.

Description The getPlainAxisName() service returns the "plain" part of a qualified axis

name. Internally, the MATRIX software uses qualified names for all axes, as qualified
axis names contain additional information about the instrument and the Experiment
Element instance an axis is associated with. The getPlainAxisName() routine

will remove this additional information from the qualified axis name passed; the
remaining plain axis name will be returned.

Please see section Axes and Axis Hierarchies for additional information on plain
axis names and qualified axis names.

Return Values Returns a character string representing the plain name of the specified axis.

Associated Routines getRootAxisQualifiedName()

getTriggerAxisQualifiedName()

7. Service Routines Reference 121 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getPlugInInfo

Returns information about all plug-in modules loaded.

Syntax plugInInfoList := getPlugInInfo ()

C++ Binding #include "Vernissage.h"

struct PlugInInfo {

 std::wstring fileSpec;

 std::wstring name;

 std::wstring version;

 std::wstring producer;

 std::wstring type;

 bool isLoaded;

 std::wstring loadMessage;

};

std::vector<PlugInInfo> Session::getPlugInInfo() const;

Arguments —

Description This routine collects information on all plug-in modules loaded and returns the result
to the caller. For each plug-in module, a separate information structure is created.

getPlugInInfo() provides information about modules that have been loaded

successfully but also about modules that could not be loaded due to some error
condition.

Return Values Returns a collection of information structures; each structure consists of the following
entries:

 fileSpec — The complete file specification of the plug-in DLL.

 name — The name of the plug-in module as returned by the getIdentity()

plug-in function.

 version — The version identifier of the plug-in module as returned by the
getIdentity() plug-in function.

 producer — The name of the plug-in producer as returned by the

getIdentity() plug-in function.

 type — A character string identifying the type of the plug-in module. Currently,
the only supported identification string is Exporter.

 isLoaded — A flag indicating whether the plug-in module has been loaded
successfully (true). If this flag is false, the respective plug-in module was not
loaded.

 loadMessage — A character string providing the result of the plug-in load
operation in human-readable form. If the module has been loaded successfully,
loadMessage will be an empty string. If the module could not be loaded,
loadMessage will contain a string describing the cause of the problem.

Associated Routines —

7. Service Routines Reference 122 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getPlugInPath

Returns the path specification of the Vernissage plug-in modules directory.

Syntax pathSpec := getPlugInPath ()

C++ Binding #include "Vernissage.h"

std::wstring Session::getPlugInPath();

Arguments —

Description This routine returns the path specification of the directory the Vernissage software
uses for loading plug-in modules. All plug-ins to be used during a Vernissage session
must be located in this directory.

Return Values Returns the path to the directory from which the Vernissage software loads plug-in
modules.

Associated Routines getPlugInInfo()

7. Service Routines Reference 123 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getPlugModuleCount

Returns the count of all plug-in modules loaded.

Syntax plugInCount := getPlugInModuleCount ()

C++ Binding
#include "Vernissage.h"

int Session::getPlugInModuleCount () const;

Arguments —

Description This routine returns the count of all modules that have been loaded successfully.

Return Values Returns the count of all plug-in modules loaded.

Associated Routines
std::vector<Session::PlugInInfo> getPlugInInfo () const;

std::wstring getPlugInPath () const;

7. Service Routines Reference 124 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getPredecessorBricklet

Returns the predecessor of a specific Bricklet.

Syntax bricklet := getPredecessorBricklet (bricklet, filterSet)

 Argument Data Type Access

bricklet Opaque reference Read

filterSet Opaque reference Read

C++ Binding #include "Vernissage.h"

void * Session::getPredecessorBricklet(void *pBricklet,

 void *pFilterSet = 0);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

filterSet
The filter set passed to the run()method of the plug-in, or a null pointer. If a null

pointer is passed, the routine will return any predecessor Bricklet. Passing a filter set
will cause the routine to return only predecessor Bricklets that are part of the filter set,
i.e. that are subject to an export operation.

Description This routine returns the predecessor Bricklet of the Bricklet passed to
getPredecessorBricklet(). The specified Bricklet must have been acquired

as part of an operation that either generated a series of consecutive Bricklets (such
as signal sampling over a defined period of time) or that produced some logically
connected Bricklets (such as a phase/amplitude curve consisting of data from a
phase Bricklet and from an amplitude Bricklet).

Please note that the getPredecessorBricklet() function can either return

any predecessor Bricklet of the specified Bricklet (if a null pointer is passed as
argument filterSet), or only Bricklets that are subject to an export operation (if a
pointer to a filter set data structure is passed as argument filterSet).

Please see section Related Bricklets for more information on Bricklet relationships.

Return Values Returns an opaque pointer to the predecessor Bricklet of the Bricklet passed to the
routine. If the specified Bricklet is the first of a consecutive Bricklet sequence, or has
no associated predecessor Bricklets, a null pointer will be returned.

Associated Routines getDependingBricklets()

getReferencedBricklets()

getSucessorBricklet()

7. Service Routines Reference 125 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getRawMax

Returns the maximum raw value the specified Bricklet contains.

Syntax rawMaximum := getRawMax (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

int Session::getRawMax(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the actual maximum raw value which the specified Bricklet
stores.

Note that for obtaining the maximum raw value, Vernissage will implicitly load the
Bricklet data from disk and unload it afterwards. Thus, calling getRawMax() and/or

getRawMin() frequently is inefficient and results in poor performance. If you want

to use getRawMin()/getRawMax() without additional overhead, you can

enclose the respective statements in calls to the loadBrickletContents()

and unloadBrickletContents() service routines.

Note also that calling getRawMax() on large Bricklets can take a significant

amount of time (i.e. several seconds).

Return Values Returns the maximum raw value the specified Bricklet stores.

Associated Routines getRawMin()

getChannelRawMin()

getChannelRawMax()

toPhysical()

toRaw()

7. Service Routines Reference 126 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getRawMin

Returns the minimum raw value the specified Bricklet contains.

Syntax rawMinimum := getRawMin (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

int Session::getRawMin(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the actual minimum raw value which the specified Bricklet stores.

Note that for obtaining the minimum raw value, Vernissage will implicitly load the
Bricklet data from disk and unload it afterwards. Thus, calling getRawMin() and/or

getRawMax() frequently is inefficient and results in poor performance. If you want

to use getRawMin()/getRawMax() without additional overhead, you can

enclose the respective statements in calls to the loadBrickletContents()

and unloadBrickletContents() service routines.

Note also that calling getRawMin() on large Bricklets can take a significant

amount of time (i.e. several seconds).

Return Values Returns the minimum raw value the specified Bricklet stores.

Associated Routines getRawMax()

getChannelRawMin()

getChannelRawMax()

toPhysical()

toRaw()

7. Service Routines Reference 127 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getReferencedBricklets

Returns a list of Bricklets that have a "referenced" relationship to a specific Bricklet.

Syntax bricklets := getReferencedBricklets (bricklet, filterSet)

 Argument Data Type Access

context Opaque reference Read

filterSet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::vector<void *> Session:: getReferencedBricklets (

 void *pBricklet, void *pFilterSet = 0);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

filterSet
The filter set passed to the run() method of the plug-in, or a null pointer. If a null

pointer is passed, the list returned will contain all related Bricklets. Passing a filter set
will cause the function to return only related Bricklets that are part of the filter set, i.e.
that are subject to an export operation.

Description This routine returns a list of Bricklets that have a "referenced" relationship to the
Bricklet passed as argument bricklet. An example for a "referenced" relationship is a
SAM image of the sample area used for running electron spectroscopy curve
acquisition operations because such curves can usually be associated with a
particular sample location.

Please note that the getReferencedBricklets() function can either return all

Bricklets related to the specified Bricklet (if a null pointer is passed as argument
filterSet), or only Bricklets that are subject to an export operation (if a pointer to a filter
set data structure is passed as argument filterSet).

Please see section Related Bricklets for more information on Bricklet relationships.

Return Values Returns a list of opaque pointers to Bricklets that have a "referenced" relationship to
the Bricklet passed to the routine. If the specified Bricklet has no associated
reference Bricklets, the returned list will be empty.

Associated Routines getDependingBricklets()

getSucessorBricklet()

getPredecessorBricklet()

7. Service Routines Reference 128 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getResultDataFileSpec

Returns the file specification of the data file storing a particular Bricklet.

Syntax fileSpec := getResultDataFileSpec (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::wstring Session::getResultDataFileSpec(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the full file specification of the result data file storing a particular
Bricklet.

In case the Bricklet passed to this service routine was embedded into the associated
result file and thus no result data file storing the Bricklet is present, an empty string
instead of a file specification will be returned.

Return Values Returns the full file specification of the result data file storing the specified Bricklet,
including drive identification letter and directory hierarchy. Returns an empty string if
the Bricklet was embedded into its result file.

Associated Routines getParentResultFileSpec()

7. Service Routines Reference 129 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getRootAxisName

Returns the plain name of the root axis of the axis hierarchy associated with a Bricklet.

Syntax name := getRootAxisName (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::wstring Session::getRootAxisName(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description The getRootAxisName() service obtains the plain name of the root axis of the

axis hierarchy associated with the data channel through which the specified Bricklet
was acquired.

The root axis is the first axis of an axis hierarchy, i.e. the axis that is not triggered by
any other axis. For example, the root axis of a data channel delivering topography
images is always the Y-axis (which triggers the X-axis, which in turn triggers the
respective channel.)

Please see section Axes and Axes Hierachies for more information on plain axis
names and qualified axis names.

Return Values Returns a character string representing the plain name of the root axis of the axis
hierarchy associated with the data channel through which the specified Bricklet was
acquired.

Associated Routines getAxisClocks()

getAxisUnit()

getTriggerAxisName()

getTriggerAxisQualifiedName()

getRootAxisQualifiedName()

getAxisDescriptor()

getAxisTableSets()

7. Service Routines Reference 130 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getRootAxisQualifiedName

Returns the qualified name of the root axis of the axis hierarchy associated with a Bricklet.

Syntax name := getRootAxisQualifiedName (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::wstring Session::getRootAxisQualifiedName(

 void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description The getRootAxisQualifiedName() service obtains the qualified name of the

root axis of the axis hierarchy associated with the data channel through which the
specified Bricklet was acquired.

The root axis is the first axis of an axis hierarchy, i.e. the axis that is not triggered by
any other axis. For example, the root axis of a data channel delivering topography
images is always the Y-axis (which triggers the X-axis, which in turn triggers the
respective channel.)

Please see section Axes and Axis Hierarchies for more information on plain axis
names and qualified axis names.

Return Values Returns a character string representing the qualified name of the root axis of the axis
hierarchy associated with the data channel through which the specified Bricklet was
acquired.

Associated Routines getAxisClocks()

getAxisUnit()

getRootAxisName()

getTriggerAxisName()

getTriggerAxisQualifiedName()

getAxisDescriptor()

getAxisTableSets()

7. Service Routines Reference 131 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getRunCycleCount

Returns the run cycle identifier of a Bricklet.

Syntax count := getRunCycleCount (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

int Session::getRunCycleCount(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description The run cycle count is a running number that starts at one and will be incremented
each time a new a data acquisition operation is started. What "operation" is actually
counted depends on the configuration of the respective data channel through which a
Bricklet was delivered.

For example, two Bricklets produced subsequently by a topography or similar
channel will have different run counts if the scan process has been restarted after the
first Bricklet was stored. However, Bricklets produced by a channel acquiring single
point spectroscopy curves will have different run counts if they resulted from different
single point spectroscopy operations. (This is usually true, except if the automatic
repetition facility for single point spectroscopy operations was active. In this case, all
Bricklets storing a curve acquired during the repetition process will have the same run
count assigned.)

The run cycle count is also part of the file name of result data files, for example, in the
result data file name "STM_Spectroscopy--4_2.Z_mtrx" the "4" is the run cycle count
of the experiment during which the Bricklet stored in the data file was generated.
(Here, the respective experiment was started four times, the Bricklet was produced
during the fourth cycle.)

The result file name "STM_Spectroscopy--7_1.I(V)_mtrx", however, could be
associated with a file storing a Bricklet from the seventh single point spectroscopy
initiated during an experiment.

Return Values Returns an unsigned integer figure indicating the run cycle of the operation during
which the specified Bricklet was generated.

Associated Routines getSequenceId()

getScanCycleCount()

7. Service Routines Reference 132 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getSampleName

Returns the sample name associated with a particular Bricklet.

Syntax name := getSampleName (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::wstring getSampleName(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the sample name that was in effect when the Bricklet passed was
created.

Return Values Returns the sample name associated with the specified Bricklet. If the MATRIX user
specified no sample name, a single dash character ('–') will be returned.

Associated Routines getCreationComment()

getDataComments()

getDataSetName()

7. Service Routines Reference 133 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getScanCycleCount

Returns the scan cycle identifier of a Bricklet.

Syntax count := getScanCycleCount (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

int Session::getScanCycleCount(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the scan cycle count associated with a particular Bricklet.

The scan cycle count is a running number starting at "1"; it will be incremented for
each Bricklet generated during the same experiment run cycle.

The scan cycle count is also part of the file name of result data files, for example, in
the result data file name "STM_Spectroscopy--4_2.Z_mtrx" the "2" is the scan cycle
count that generated the Bricklet stored in the data file. (Here, the respective Bricklet
was the second generated during the fourth run cycle.)

Return Values Returns an unsigned integer figure indicating the experiment scan cycle that
generated the specified Bricklet.

Associated Routines getSequenceId()

getRunCycleCount()

7. Service Routines Reference 134 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getSequenceId

Returns the sequence identifier of a Bricklet.

Syntax id := getSequenceId (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

int Session::getSequenceId(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine returns the sequence identifier associated with a particular Bricklet.

The sequence identifier (also referred to as sequence ID) is a running number
starting at "1" which gets incremented for each new Bricklet delivered by a specific
data channel. Please note, however, that the sequence ID will be reset after a
change to the data space structure of an experiment, thus a specific sequence ID can
be assigned to more than one Bricklet. (The structure of the experiment data space
changes for example if the user modifies the number of points/lines of the scan area,
the number of points per spectroscopy curve, enables or disables the scan sub-grid,
selects a new scan mode, etc. However, changing parameters such as the scan area
angle, the data acquisition raster time, the scan area offset and similar have no
impact on the structure of the data space.)

Return Values Returns an unsigned integer figure indicating the Bricklet sequence identifier
associated with the specified Bricklet.

Associated Routines getRunCycleCount()

getScanCycleCount()

7. Service Routines Reference 135 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getSession

Returns an interface object to the Vernissage session services.

Syntax getSession ()

C++ Binding #include "Vernissage.h"

Vernissage::Session* ::getSession();

Arguments —

Description This routine returns an interface object providing access to the Vernissage session
services. All service routines for loading, traversing and querying result data
structures are available through this interface object only.

Call releaseSession() when the interface object obtained through a call to

getSession() is no longer required.

Vernissage plug-in modules are not obliged to call getSession() as they receive

the interface object to the session services automatically when invoked.

Return Values Returns a pointer to an object of type Vernissage::Session to be used for accessing
the Vernissage session services.

Associated Routines releaseSession()

7. Service Routines Reference 136 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getSpatialInfo

Returns information about the sample location(s) at which a Bricklet was acquired.

Syntax spatialInfo := getSpatialInfo (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

struct SpatialInfo {

 std::vector<double> physicalX;

 std::vector<double> physicalY;

 bool originatorKnown;

 std::wstring channelName;

 int sequenceId;

 int runCycleCount;

 int scanCycleCount;

 std::wstring viewName;

 int viewSelectionId;

 int viewSelectionIndex;

};

SpatialInfo Session::getSpatialInfo(void *pBricklet);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

Description This service returns information about sample locations at which a particular Bricklet
was acquired; the position information is based on the coordinate system of a
reference Bricklet.

Information about sample locations is only available for certain operations such as
single point spectroscopy (SPS) or atom manipulation (AtMa) procedures. It will be
generated for Bricklets storing data acquired during such operations only. (Such
Bricklets can be identified by calling the service routine getType(). Alternatively,

you may also call getDimensionCount(); the service will return "1" for curve

data. In the latter case, to be sure that a Bricklet storing curve data was actually
generated during an SPS or atom manipulation operation, it must be either
associated with a View of type vtc_Spectroscopy (for SPS) or

vtc_1DProfile (for AtMa.) You may obtain the View types associated with a

Bricklet by calling the getViewTypes() service routine.)

In case of SPS, the information returned by getSpatialInfo() is useful for

determining the sample position at which the spectroscopy curve was acquired with
respect to the configured scan area. Each of the two arrays physicalX and physicalY
returned as part of the information structure conveyed by getSpatialInfo() will

contain a single entry describing the "physical" coordinate of the location as offset (in
metres) to the centre of the configured scan area. (An offset of X = 0, Y = 0 means
that the SPS operation was run at the centre of the scan area.)

In case of an atom manipulation operation, the information returned by the service
routine can be used to determine the start and end point of the vector associated with
the manipulation operation. In this case, the two arrays physicalX and phyiscalY
returned will contain two values; the first X/Y values describe the "physical"
coordinate of the vector's start point, while the second values describe the end point.
Again, the values have to be interpreted as offset to the centre of the configured scan
area.

If the Bricklet was generated by MATRIX version V1.0–4 or later, the
getSpatialInfo() service routine will also return information allowing you to

determine the exact image the MATRIX user has utilised as reference for initiating
the operation: Besides the data channel through which the image data were acquired,

7. Service Routines Reference 137 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

identification information regarding the Bricklet containing the respective image will
be returned. In addition, the information collected by getSpatialInfo() will also

indicate the part of the scan cycle (e.g. "forward/up") that was in progress when the
operation was launched.

By using the entire set of information items returned by getSpatialInfo() you

can correlate the results of an operation with the original (image) position the user
has clicked on.

Please note that the data fields viewName and viewSelectionIndex of the information
structure returned by getSpatialInfo() are currently of limited or no use for

third party software modules.

Return Values Returns an information structure comprising the following entries:

physicalX — A list of physical X-axis values (in metres).

physicalY — A list of physical Y-axis values (in metres).

originatorKnown — A flag indicating whether additional information about the
View/display combination that was used for initiating the acquisition operation is
available.

If the flag originatorKnown is set to true, the following fields will be filled also:
(Otherwise, the below fields will not contain meaningful information.)

channelName — The name of the channel that produced the reference image used
for initiating the acquisition operation.

sequenceId — The sequence ID of the Bricklet storing the reference image.

runCycleCount — The run cycle count of the Bricklet storing the reference image.

scanCycleCount — The scan cycle count of the Bricklet storing the reference image.

viewName — The name of the View instance associated with the display that was
used for selecting the sample location.

viewSelectionId — A code describing the type of information reduction the associated
View used for data processing. This code hence determines during which part of the
scan cycle the data acquisition operation was initiated. Valid codes are:

Type Code Description

-1 Not applicable or no information available

0 Forward/Up scan sweep

1 Backward/Up scan sweep

2 Forward/Down scan sweep

3 Backward/Down scan sweep

viewSelectionIndex — Always zero.

Associated Routines getDimensionCount()

getViewTypes()

getType()

7. Service Routines Reference 138 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getSuccessorBricklet

Returns the successor of a specific Bricklet.

Syntax bricklet := getSuccessorBricklet (bricklet, filterSet)

 Argument Data Type Access

bricklet Opaque reference Read

filterSet Opaque reference Read

C++ Binding #include "Vernissage.h"

void * Session::getSuccessorBricklet(void *pBricklet,

 void *pFilterSet = 0);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

filterSet
The filter set passed to the run()method of the plug-in, or a null pointer. If a null

pointer is passed, the routine will return any successor Bricklet. Passing a filter set
will cause the routine to return only successor Bricklets that are part of the filter set,
i.e. that are subject to an export operation.

Description This routine returns the successor Bricklet of the Bricklet passed to
getSuccessorBricklet(). The specified Bricklet must have been acquired as

part of an operation that either generated a series of consecutive Bricklets (such as
signal sampling over a defined period of time) or that produced some logically
connected Bricklets (such as a phase/amplitude curve consisting of data from a
phase Bricklet and from an amplitude Bricklet).

Please note that the getSuccessorBricklet() function can either return any

successor Bricklet of the specified Bricklet (if a null pointer is passed as argument
filterSet), or only Bricklets that are subject to an export operation (if a pointer to a filter
set data structure is passed as argument filterSet).

Please see section Related Bricklets for more information on Bricklet relationships.

Return Values Returns an opaque pointer to the successor Bricklet of the Bricklet passed to the
routine. If the specified Bricklet is the last of a consecutive Bricklet sequence, or has
no associated successor Bricklets, a null pointer will be returned.

Associated Routines getDependingBricklets()

getReferencedBricklets()

getPredecessorBricklet()

7. Service Routines Reference 139 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getTriggerAxisName

Returns the plain name of the axis triggering the data channel through which a Bricklet was acquired.

Syntax name := getTriggerAxisName (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::wstring Session::getTriggerAxisName(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description The getTriggerAxisName() service obtains the plain name of the axis that

triggers the data channel through which the specified Bricklet was acquired.

The trigger axis is the last axis of an axis hierarchy, i.e. the axis that triggers a data
acquisition channel. For example, the trigger axis of a channel delivering topography
images is always the X-axis (which itself gets triggered by the Y-axis.)

Please see section Axes and Axes Hierachies for more information on plain axis
names and qualified axis names.

Return Values Returns a character string representing the plain name of the trigger axis of the axis
hierarchy associated with the data channel through which the specified Bricklet was
acquired.

Associated Routines getAxisClocks()

getAxisUnit()

getRootAxisName()

getRootAxisQualifiedName()

getTriggerAxisQualifiedName()

getAxisDescriptor()

getAxisTableSets()

7. Service Routines Reference 140 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getTriggerAxisQualifiedName

Returns the qualified name of the axis triggering the data channel through which a Bricklet was acquired.

Syntax name := getTriggerAxisQualifiedName (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

std::wstring Session::getTriggerAxisQualifiedName(

 void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description The getTriggerAxisQualifiedName() service obtains the qualified name of

the axis that triggers the data channel through which the specified Bricklet was
acquired.

The trigger axis is the last axis of an axis hierarchy, i.e. the axis that triggers a data
acquisition channel. For example, the trigger axis of a channel delivering topography
images is always the X-axis (which itself gets triggered by the Y-axis.)

Please see section Axes and Axis Hierarchies for more information on plain axis
names and qualified axis names.

Return Values Returns a character string representing the qualified name of the trigger axis of the
axis hierarchy associated with the data channel through which the specified Bricklet
was acquired.

Associated Routines getAxisClocks()

getAxisUnit()

getRootAxisName()

getRootAxisQualifiedName()

getTriggerAxisName()

getAxisDescriptor()

getAxisTableSets()

7. Service Routines Reference 141 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getType

Returns a code identifying the contents of a Bricklet.

Syntax ident := getType (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

typedef enum {

 btc_Unknown,

 btc_SPMSpectroscopy,

 btc_AtomManipulation,

 btc_1DCurve,

 btc_SPMImage,

 btc_PathSpectroscopy,

 btc_ESpRegion,

 btc_VolumeCITS,

 btc_DiscreteEnergyMap,

 btc_ForceCurve,

 btc_PhaseAmplitudeCurve,

 btc_SignalOverTime,

 btc_RawPathSpectroscopy,

 btc_ESpSnapshotSequence,

 btc_ESpImageMap,

 btc_InterferometerCurve,

 btc_ESpImage

} BrickletTypeCode;

BrickletTypeCode Session::getType(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description This routine analyses the contents of the Bricklet passed and returns a code
identifying the type of data stored by the Bricklet. Calling getType() is thus

basically a convenience function simplifying the procedure of identifying the kind of
operation to be applied when processing the contents of a particular Bricklet.

The routine may return the following identification codes:

 btc_SPMSpectroscopy — The Bricklet stores a single SPM spectroscopy

curve.

 btc_AtomManipulation — The Bricklet contains data (actually a one-

dimensional object such as an I(r) curve) resulting from an Atom Manipulation
operation.

 btc_1DCurve — The Bricklet stores an unspecific curve, i.e. the type of

operation that produced the curve is arbitrary.

 btc_SPMImage — The Bricklet contains one (in case of a "forward only", "up

only") to four (in case of a "forward/backward", "up/down") SPM images.

 btc_VolumeCITS — The Bricklet is a three-dimensional object storing the

spectroscopy curves from a raster spectroscopy ("Volume CITS") experiment
run.

 btc_PhaseAmplitudeCurve — The Bricklet stores one curve from a

7. Service Routines Reference 142 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Phase/Amplitude curve set, i.e. a phase curve or an amplitude curve.

 btc_SignalOverTime — The Bricklet contains a one-dimensional object

representing one part of a curve acquired continuously over time.

 btc_RawPathSpectroscopy — The Bricklet stores "raw" counts for a

number of data points at different energy levels. ("raw" means that all counts
from all channels are stored separately without any preprocessing.) The
structure of the Bricklet is three-dimensional, as each set of counts is
represented n times with n being the number of energy levels used for the
experiment

 btc_PathSpectroscopy — Similar to "raw" path spectroscopy, the Bricklet

stores data acquired at various locations, however, the counts from the various
channels will not be stored separately but as a single accumulated count value.

 btc_ESpRegion — The Bricklet represents electron spectroscopy result data,

i.e. the electron counts of the various detector channels for each point of an
electron spectroscopy curve.

 btc_ ESpSnapshotSequence — The Bricklet stores the electron counts of

the various detector channels for a specific number of acquisition operations
("snapshots") at different energy levels.

 btc_DiscreteEnergyMap — The Bricklet contains a discrete energy map,

i.e. a number of two-dimensional planes representing accumulated electron
counts; each plane was acquired at a specific energy level.

 btc_ESpImageMap — The Bricklet consists of a four-dimensional data object

representing a number of 2D-planes each of which has been acquired at a
particular energy level. Each data point on a plane in turn consists of a set of
"raw" data counts (one count value per channel)

 btc_ForceCurve — The Bricklet stores a single force/distance curve.

 btc_InterferometerCurve — The bricklet stores Force/distance curve

 btc_ESpImage — The Bricklet contains a forward/down Sp image (2D SEM

image acquired by generic scanner)

 btc_Unknown — The data contents of the Bricklet could not be identified. This

code can be returned if the Bricklet has been generated by a MATRIX software
version that is not compatible with the Vernissage release in use.

Return Values Returns an identification code determining the type of data stored by a particular
Bricklet.

Associated Routines getDimensionCount()

getViewTypes()

7. Service Routines Reference 143 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

getViewTypes

Returns a list of Data Views associated with a particular Bricklet.

Syntax viewTypes := getViewTypes (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

typedef enum {

 vtc_Other, vtc_Simple2D, vtc_Simple1D, vtc_ForwardBackward2D,

 vtc_2Dof3D, vtc_Spectroscopy, vtc_ForceCurve, vtc_1DProfile,

 vtc_Interferometer, vtc_ContinuousCurve,

 vtc_PhaseAmplitudeCurve, vtc_CurveSet,

 vtc_ParameterisedCurveSet, vtc_DiscreteEnergyMap,

 vtc_ESpImageMap

} ViewTypeCode;

std::vector<ViewTypeCode> Session::getViewTypes(

 void *pBricklet);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

Description This routine determines the Data Views associated with the data channel at which the
specified Bricklet originated; the routine will return a list of View identification codes
specifying the types of Views utilised.

The types of Views associated with a particular data channel can be of interest,
because they hint at the use of the data acquired through that channel at experiment
run-time. For example, the View type code vtc_ForwardBackward2D reveals

that the data from the respective channel was used for feeding 2D displays rendering
data from a spatial scan process. The View type code vtc_Spectroscopy

together with vtc_2Dof3D reveals that the acquired data were fed into a display

dedicated to rendering SPM spectroscopy curves and into another display showing
spectroscopy curves parameter-wise. (The latter display would only be active when
the grid spectroscopy option had been enabled.)

Whenever the inherent characteristics of the data contained by a particular Bricklet
(for example, the dimensionality of the data) is not sufficient to determine how to
process the Bricklet contents, checking the associated View types can provide
additional hints: For example, when encountering a Bricklet storing one-dimensional
data (i.e. a single curve), checking the associated Views will instantly reveal whether
the respective data were generated during a single point spectroscopy operation, an
AFM force/distance curve experiment, an AtMa operation etc.

See section Understanding Data Views for more information on View types and the
View type codes.

Return Values Returns a list of View type codes associated with the specified Bricklet as argument.
If the Bricklet originated at a channel associated with several Views of the same type,
the respective type code is only returned once. If no View was assigned to the
channel at which the specified Bricklet originated, the returned list will be empty.

Associated Routines getDimensionCount()

getSpatialInfo()

getType()

7. Service Routines Reference 144 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

loadAllResultSets

Loads all result sets from a directory into the internal database.

Syntax loadAllResultSets (pathSpec, accumulative)

 Argument Data Type Access

pathSpec Wide-character string Read

accumulative Boolean Read

C++ Binding #include "Vernissage.h"

bool Session::loadAllResultSets(std::wstring pathSpec,

 bool accumulative);

Arguments pathSpec
An absolute or relative path specification determining the directory containing the
result set(s) to be loaded.

accumulative
A flag indicating whether the result sets should be added to the database (true), or
will replace the current result sets in the database (false).

Description This service routine allows third party applications to load all result sets from a
specific directory into the internal database of the Vernissage software.

The pathSpec argument must specify the path to an existing directory storing the
result sets to be loaded and can contain a Microsoft Windows absolute (e.g.
"D:\Result Files\Today") or relative (e.g. "..\..\Today") path description.

The loadAllResultSets() function will ignore any file stored in the specified

location that is not part of a result set. The function will not search sub-directories of
the specified directory.

This routine is only useful for special third party applications that need to load result
sets and must not be called by exporter plug-ins.

Return Values True if the result sets have been loaded successfully, false if at least one of the
specified result sets could not be loaded.

Note that if loadAllResultSets() returns false, this does not necessarily

indicate that the Vernissage-internal database remained unchanged, as some result
sets (or part of a result set) may have been loaded successfully.

Associated Routines loadResultSet()

eraseResultSets()

loadBrickletContents()

unloadBrickletContents()

7. Service Routines Reference 145 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

loadBrickletContents

Loads the data contained by a Bricklet into memory.

Syntax loadBrickletContents (bricklet, buffer, count)

 Argument Data Type Access

bricklet Opaque reference Read

buffer Integer array reference Modify

count Signed integer Modify

C++ Binding #include "Vernissage.h"

void Session::loadBrickletContents(void *pBricklet,

 const int **pBuffer,

 int& count);

Arguments bricklet
An opaque pointer variable from a previous call to getNextBricklet().

buffer
A pointer variable into which the service routine will store the address of the data
buffer containing the Bricklet contents.

count
A reference to an integer variable into which the service routine will store the number
of data items contained by the Bricklet.

Description As Bricklets can be quite large (and the raw data contained by a Bricklet can thus
occupy significant amounts of memory), the Vernissage core software does not load
Bricklet contents by default. When access to the raw data stored in a Bricklet is
required, you must load the Bricklet contents into memory first.

The loadBrickletContents() service routine will allocate a buffer large

enough to hold the contents of the Bricklet passed as argument to the routine and
load the raw data into that buffer. If the Bricklet data are stored in a separate result
data file, loadBrickletContents() will read the data from the respective file.

To deallocate the memory used for storing the contents of the specified Bricklet, call
the unloadBrickletContents() service routine.

The loadBrickletContents() service will load the raw data of a Bricklet only

once, multiple calls to loadBrickletContents() with an identical bricklet

argument will return the same buffer address for each call. Note that the Vernissage
core will record all calls to loadBrickletContents() that refer to the same

Bricklet internally, the buffer storing the raw data will not be deallocated unless the
unloadBrickletContents() routine has been called as many times as

loadBrickletContents() was used on the same Bricklet. (In practise, this

generally means that each time your code calls loadBrickletContents()

with a particular Bricklet as argument, it must call
unloadBrickletContents() subsequently in order to deallocate the memory

used for storing the raw data of the respective Bricklet.)

Upon successful completion, the loadBrickletContents() service will store

the address of the buffer containing the raw data of the Bricklet into the pointer
variable passed as buffer argument; the number of raw data items will be stored in
the integer variable passed as argument count.

If loadBrickletContents() fails to allocate the buffer, or is not able to access

the result data file storing the Bricklet, a null pointer will be returned.

Return Values —

7. Service Routines Reference 146 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Associated Routines unloadBrickletContents()

7. Service Routines Reference 147 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

loadResultSet

Loads one or more result sets into the internal database.

Syntax loadResultSet (pathSpec, fileName, accumulative)

 Argument Data Type Access

pathSpec Wide-character string Read

fileName Wide-character string Read

accumulative Boolean Read

C++ Binding #include "Vernissage.h"

bool Session::loadResultSet(std::wstring pathSpec,

 std::wstring fileName,

 bool accumulative);

Arguments pathSpec
An absolute or relative path specification determining the path to the result file(s) to
be loaded. The path specification may not contain any wildcard characters.

fileName
The name of the result file to be loaded. The name may contain wildcard characters;
if such characters are found, all files matching the wildcard pattern will be loaded.

accumulative
A flag indicating whether the result set(s) should be added to the database (true), or
will replace the current result sets in the database (false).

Description This service routine allows third party applications to load one or more result sets
from a specific directory. The routine also allows to restrict the load operation to one
or more result data files.

The filePath and fileName arguments determine the path and name of the file(s) to
be loaded. The file path specification can be both, absolute (e. g. "C:\Temp\Today")
or relative (e. g. "..\..\Today"). The file name specifies the name of the result set to be
loaded and may contain wildcard characters (such as "*" or "?") for loading several
result sets in one operation.

In case the file name part of the file specification uses wildcards, the
loadResultSet() function will load any MATRIX result file or result data file

matching the file specification pattern; non-MATRIX files matching the pattern will be
ignored.

If a file specification pattern matches a particular result data file as well as its
associated result file, the Bricklet data will nevertheless be loaded only once. Also,
patterns matching several result files from the same result file chain will not cause
multiple read operations.

This routine is only useful for special third party applications that need to load result
sets and must not be called by exporter plug-ins.

Return Values True if the result set(s) have been loaded successfully, false if at least one of the
specified result sets could not be loaded.

Note that if loadResultSet() returns false, this does not necessarily indicate

that the Vernissage-internal database remained unchanged, as some result sets (or
part of a result set) may have been loaded successfully.

Associated Routines loadAllResultSets()

eraseResultSets()

loadBrickletContents()

unloadBrickletContents()

7. Service Routines Reference 148 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

makePath

Concatenates a file or directory path element to an existing path.

Syntax pathSpec := makePath (pathSpec, pathElement)

 Argument Data Type Access

pathSpec Wide-character string Read

pathElement Wide-character string Read

C++ Binding #include "Vernissage.h"

std::wstring Session::makePath(std::wstring path,

 std::wstring element);

Arguments pathSpec
An absolute or relative path specification.

pathElement
A file or directory path element to be joined with the given path specification.

Description This convenience routine concatenates the specified file or directory path element
(for example, the file name specification "Outfile.txt") to a given path specification
(such as "C:\Temp"). The resulting path specification ("C:\Temp\Outfile.txt") will be
returned.

Return Values Returns the concatenated path specification.

Associated Routines splitPath()

7. Service Routines Reference 149 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

releaseBrickletContext

Terminates a Bricklet set iteration sequence and resets the context.

Syntax releaseBrickletContext (context)

 Argument Data Type Access

context Opaque reference Modify

C++ Binding #include "Vernissage.h"

void Session::releaseBrickletContext(void **pContext);

Arguments context

An opaque pointer variable from a previous call to the getNextBricklet()

service.

Description This routine terminates a Bricklet set iteration sequence initiated by a previous call to
the getNextBricklet() service. The service context will be reset; subsequent

calls to getNextBricklet() with the same context argument will restart the

iteration.

Calling releaseBrickletContext() is not required if the entire Bricklet set

has already been returned, i.e. the most recent call to the getNextBricklet()

service returned a null pointer.

Return Values —

Associated Routines getNextBricklet()

7. Service Routines Reference 150 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

releaseSession

Marks an interface object as obsolete for the Vernissage session services.

Syntax releaseSession ()

C++ Binding #include "Vernissage.h"

void ::releaseSession();

Arguments —

Description This routine marks an interface object obtained through a call to getSession() as

obsolete. After calling releaseSession(), you must not use the respective

interface object for calling Vernissage services any longer.

Vernissage plug-in modules are not obliged to call releaseSession() as the

interface object management is done automatically by the Vernissage core software.

Return Values —

Associated Routines getSession()

7. Service Routines Reference 151 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

showWorkInProgress

Renders a work-in-progress indicator for informing the user about the progress of data processing.

Syntax showWorkInProgress (percentage)

 Argument Data Type Access

percentage Unsigned integer Read

C++ Binding #include "Vernissage.h"

void Session::showWorkInProgress(int percentage);

Arguments percentage
The percentage to which data processing has already be completed.

Description This routine will direct the Vernissage core software to render a work-in-progress
indicator. The indicator will reflect the amount of data processing work a (plug-in)
module has already completed; this amount must be passed to the routine as
percentage.

The showWorkInProgress() service routine can be called multiple times with

(presumably) increasing percentage argument values to keep a Vernissage user
updated about the progress of the active module.

If percentage is smaller than zero, showWorkInProgress() will return

immediately without updating the indicator.

The type of indicator rendered by the showWorkInProgress() service depends

on the active user interface and other aspects of the execution environment; you
should not assume a particular type of indicator (such as a work-in-progress box) to
be rendered when calling this routine.

Note that this routine is intended for use by plug-in modules and is of no use for third
party software linking against the Vernissage service API.

Return Values —

Associated Routines —

7. Service Routines Reference 152 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

splitPath

Splits a file or directory path specification into its components.

Syntax components := splitPath (pathSpec)

 Argument Data Type Access

pathSpec Wide-character string Read

C++ Binding #include "Vernissage.h"

std::vector<std::wstring> Session::splitPath(

 std::wstring path);

Arguments pathSpec
An absolute or relative path specification.

Description This convenience routine splits the given path specification into its components. The
path specification can be absolute or relative, is not required to refer to an existing file
or directory hierarchy and can therefore also be incomplete.

Return Values Returns a collection of wide-character strings representing the components of the
given path specification.

Associated Routines makePath()

7. Service Routines Reference 153 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

toPhysical

Returns the physical quantity representation of a raw value with respect to the specified Bricklet.

Syntax physical := toPhysical (raw, bricklet)

 Argument Data Type Access

raw Signed integer Read

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

double Session::toPhysical(int rawValue,

 void *pBricklet);

Arguments rawValue
The raw value to be transformed.

bricklet
An opaque pointer variable from a previous call to getNextBricklet().

Description This routine transforms the specified raw value into a physical quantity. The transfer
function used for the operation is determined by the data channel through which the
specified Bricklet has been acquired.

Calling toPhysical() on a value that is not raw data from the Bricklet passed as

second argument may result in an invalid physical value.

To obtain the name of the unit of the physical quantity, use the service routine
getChannelUnit().

Return Values Returns the transformed raw value.

Associated Routines getRawMin()

getRawMax()

getChannelRawMin()

getChannelRawMax()()

toRaw()

7. Service Routines Reference 154 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

toRaw

Returns the raw representation of the specified physical value with respect to the specified Bricklet.

Syntax raw := toRaw (physical, bricklet)

 Argument Data Type Access

physical Double-precision floating point Read

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

int Session::toRaw(double physicalValue,

 void *pBricklet);

Arguments physicalValue
The physical value to be transformed.

bricklet
An opaque pointer variable from a previous call to getNextBricklet().

Description This routine transforms the specified physical value into its raw representation
equivalent. The transfer function used for the operation is determined by the data
channel through which the specified Bricklet has been acquired.

Calling toRaw() on a physical value that is not the physical representation of a raw

data item from the Bricklet passed as second argument may result in an invalid raw
value.

Return Values Returns the transformed physical value.

Associated Routines getRawMin()

getRawMax()

getChannelRawMin()

getChannelRawMax()()

toPhysical()

7. Service Routines Reference 155 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

unicodeToAnsi

Converts a wide-character Unicode string into its 8-bit ANSI multi-byte equivalent.

Syntax ansiString := unicodeToAnsi (unicodeString)

 Argument Data Type Access

unicodeString Wide-character string Read

C++ Binding #include "Vernissage.h"

std::string Session::unicodeToAnsi(std::wstring str);

Arguments unicodeString
The wide-character string to be converted into its 8-bit ANSI equivalent.

Description This routine converts a wide-character Unicode-encoded string into the
corresponding ANSI/ASCII 8-bit equivalent.

This is a convenience routine for simplifying the management of string data.

Return Values Returns the 8-bit ANSI/ASCII-equivalent of the input character string.

Associated Routines ansiToUnicode()

7. Service Routines Reference 156 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

unloadBrickletContents

Unloads the data of a particular Bricklet from memory.

Syntax unloadBrickletContents (bricklet)

 Argument Data Type Access

bricklet Opaque reference Read

C++ Binding #include "Vernissage.h"

void Session::unloadBrickletContents(void *pBricklet);

Arguments bricklet

An opaque pointer variable from a previous call to getNextBricklet().

Description The unloadBrickletContents() service routines deallocates the memory

buffer used for storing the raw data of the specified Bricklet. After the routine returns,
you must not access the buffer contents any longer.

If the loadBrickletContents() service was called multiple times with the

same bricklet argument, a call to unloadBrickletContents() will only mark

the respective raw data buffer for deletion, however, the buffer and its contents will be
retained. The Vernissage core will deallocate the buffer when the number of calls to
unloadBrickletContents() matches the number of calls to

loadBrickletContents() for the same Bricklet.

Note that calling loadBrickletContents() without a subsequent call to

unloadBrickletContents() will cause the Vernissage software to keep the

raw data of the affected Bricklet in memory. As Bricklets can become quite large (and
hence can utilise significant amounts of memory) failing to call
unloadBrickletContents() can be the source of an unexpected memory

depletion or software performance degradation.

Return Values —

Associated Routines loadBrickletContents()

Appendix: Raw Data Structures 157 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Appendix: Raw Data Structures

This appendix briefly describes all Bricklet raw data structures the Vernissage software can process. Whether
a particular exporter module is capable to convert each of these structures strongly depends on the exporter
implementation and target data format.

SPM Bricklet Types

SPM Image

Bricklet type code: btc_SPMImage

Dimensionality: 2

Common View types: vtc_ForwardBackward2D

The raw data represents the signal samples as signed 32-bit values. Samples are stored in the order of
acquisition; e.g. "forward" sweep of first scan line, "backward" sweep of first scan line (if enabled), etc. If the
scan process included an "up" trace as well as a "down" trace, the Bricklet will not only include the samples
obtained during the "upward" scan, but also store the data line by line in reversed order as acquired while
scanning in "downward" direction.

Figure 40. SPM image data of a forward/backward up/down scan.

SPS Curve

Bricklet type code: btc_SPMSpectroscopy

Dimensionality: 1

Common View types: vtc_Spectroscopy

The raw data represents the signal samples as signed 32-bit values; each data item corresponds to a point on
the spectroscopy curve. If the "ramp reversal" option was enabled during the spectroscopy operation, the
Bricklet will also contain the data acquired while retracing the ramp.

Figure 41. SPS curve data.

Volume CITS

Bricklet type code: btc_VolumeCITS

Dimensionality: 3

Common View types: vtc_Spectroscopy, vtc_2Dof3D

Appendix: Raw Data Structures 158 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

The raw data represents the signal samples as signed 32-bit values; each data item corresponds to a point on
a spectroscopy curve. If the "ramp reversal" option was enabled during the spectroscopy operation, the
Bricklet will also contain the data acquired while retracing the ramp. The Bricklet stores acquired data curve-
by-curve in the order of acquisition; e.g. spectroscopy curve data acquired during the "forward" sweep of the
first scan line, and then during the "backward" sweep of the first scan line (if enabled), etc. If the scan process
included an "up" trace as well as a "down" trace, the Bricklet will not only include the spectroscopy curve data
obtained during the "upward" scan, but also while scanning in "downward" direction.

Figure 42. Volume CITS data of a forward/backward up/down scan.

Phase/Amplitude Curve

Bricklet type code: btc_PhaseAmplitudeCurve

Dimensionality: 1

Common View types: vtc_PhaseAmplitudeCurve

The raw data represents the phase or amplitude signal samples as signed 32-bit values; each data item
corresponds to a point on the phase or amplitude curve. A Bricklet of this type either contains a phase curve
or an amplitude curve but not both. Please refer to section Related Bricklets for more information on finding
the corresponding amplitude or phase curve for a given Bricklet of type "Phase/Amplitude Curve".

Figure 43. Phase/amplitude curve data.

Force Curve

Bricklet type code: btc_ForceCurve

Dimensionality: 1

Common View types: vtc_ForceCurve

The raw data represents the force signal samples as signed 32-bit values; each data item corresponds to a
point on the force/distance curve. The Bricklet will contain the data acquired during the approach and retract
phase of the operation in chronological order.

Appendix: Raw Data Structures 159 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Figure 44. Force/distance curve data.

Atom Manipulation Curve

Bricklet type code: btc_AtomManipulation

Dimensionality: 1

Common View types: vtc_1DProfile

The raw data represents the signal samples as signed 32-bit values; each data item corresponds to a point on
the atom manipulation curve.

Figure 45. Atom manipulation curve data.

Continuous Signal Curve

Bricklet type code: btc_SignalOverTime

Dimensionality: 1

Common View types: vtc_ContinuousCurve

The raw data represents the respective signal samples as signed 32-bit values; each data item corresponds
to a point on the curve. The Bricklet will contain the number of samples configured by the user and is usually
part of a longer sequence of curve segment Bricklets resulting from sampling a signal for a specific period.
Please refer to section Related Bricklets for more information on finding the related curve segments for a
given Bricklet of type "Continuous Signal Curve".

Figure 46. Curve data representing a segment from a continuous curve.

Arbitrary Curve

Bricklet type code: btc_1DCurve

Dimensionality: 1

Common View types: vtc_Interferometer

The raw data represents the respective signal samples as signed 32-bit values; each data item corresponds
to a point on the curve. The "physical" interpretation of the curve is unspecific; however, the Bricklet type is
currently used for storing data from an interferometer adjustment data channel only.

Appendix: Raw Data Structures 160 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Figure 47. Unspecific curve data.

Electron Spectroscopy Bricklet Types

Region Sweep

Bricklet type code: btc_ESpRegion

Dimensionality: 2

Common View types: vtc_CurveSet

The raw data represents a set of electron counts; for each energy analyser detector channel a dedicated
count is stored. The Bricklet represents a single energy range sweep and contains a set of electron counts for
each energy level of the sweep.

Figure 48. Electron spectroscopy data from a single energy range sweep.

Line/Multi-Point Energy Map

Bricklet type code: btc_PathSpectroscopy

Dimensionality: 2

Common View types: vtc_DiscreteEnergyMap

The raw data represents accumulated electron counts (i.e. the sum of all counts from the various energy
analyser detector channels) acquired at a particular discrete energy level and at a particular sample location.
The organisation of the counts depends on the energy switching policy configured; the counts will be either
grouped by sample location (switching policy "Point-wise"), or by energy level (switching policy "Path-wise" or
"Set-wise", respectively.)

Figure 49. Path spectroscopy data, energy switching policy point-wise.

Line/Multi-Point "Raw" Energy Map

Bricklet type code: btc_RawPathSpectroscopy

Dimensionality: 3

Common View types: vtc_DiscreteEnergyMap

Appendix: Raw Data Structures 161 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

The raw data represents electron counts; unlike the line/multi-point energy map outlined above, a dedicated
count value is stored for every energy analyser detector channel. Each set of counts has been acquired at a
particular discrete energy level and at a particular sample location. The organisation of the count sets
depends on the energy switching policy configured; the sets will be either grouped by sample location
(switching policy "Point-wise"), or by energy level (switching policy "Path-wise" or "Set-wise", respectively.)

Figure 50. Path spectroscopy data, energy switching policy point-wise.

Discrete Energy Map (Raw Image)

Bricklet type code: btc_ESpImageMap

Dimensionality: 4

Common View types: vtc_ESpImageMap

The raw data represents electron counts acquired at different discrete energy levels; a dedicated count value
is stored for every energy analyser detector channel. The Bricklet contents can be interpreted as a "layered"
image where each "pixel" of a particular layer actually consists of n electron counts acquired at a specific
energy level. The number of image layers would then correspond to the number of energy levels used. The
actual organisation of the counts depends on the energy switching policy configured; the counts will be either
grouped by sample location (switching policy "Point-wise"), scan line-by-scan line (switching policy "Line-
wise") or by energy level (switching policy "Frame-wise".)

Figure 51. Raw image map data, energy switching policy frame-wise.

Energy Snapshot Sequence

Bricklet type code: btc_ESpSnapshotSequence

Dimensionality: 3

Common View types: vtc_ParameterisedCurveSet

The raw data represents electron counts resulting from a series of "snapshots" executed consecutively at
different energy levels; the sequence of energy levels can be repeated an arbitrary number of times. The
Bricklet contains a dedicated count value for every energy analyser detector channel. The Bricklet can contain
up to 4,096 repetitions of the acquisition sequence for the various energy levels; as an actual snapshot
sequence can consist of significantly more than 4,096 repetitions, a specific Bricklet of type "Energy Snapshot
Sequence" might only be one part of a set of consecutive snapshot Bricklets. (Please refer to section Related
Bricklets for more information on finding the related parts of a given Bricklet of type "Energy Snapshot
Sequence".)

Appendix: Raw Data Structures 162 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Figure 52. Snapshot sequence data.

Discrete Energy Map (Accumulated Counts)

Bricklet type code: btc_DiscreteEnergyMap

Dimensionality: 3

Common View types: vtc_ESpImageMap

The raw data represents accumulated electron counts (i.e. the sum of all counts from the various energy
analyser detector channels) acquired at different discrete energy levels. The Bricklet contents can be
interpreted as a "layered" image where each "pixel" of a particular layer actually consists of an accumulated
electron count acquired at a specific energy level. The number of image layers would then correspond to the
number of energy levels used. The actual organisation of the counts depends on the energy switching policy
configured; the counts will be either grouped by sample location (switching policy "Point-wise"), line-by-line
(switching policy "Line-wise") or by energy level (switching policy "Frame-wise".)

Figure 53. Image map data, energy switching policy frame-wise.

Generic Image

Bricklet type code: btc_ESpImage

Dimensionality: 2

Common View types: vtc_Downward2D

The raw data items represent accumulated electron counts for each sample location in the order of
acquisition. Hence, the raw data is organised as a series of 32-bit values representing the image left-to-right
and line-by-line, starting with the pixel in the upper left corner of the image. (With respect to SPM image data,
the scan direction is thus always "forward/down".)

Figure 54. Electron spectroscopy image data of a generic image.

1 2 3 4 5 ...

Line 1

"forward/down"

Line 2

"forward/down"

1 2 3 4 5 1 2 3 4 5

Line n

"forward/down"

Service at Omicron 163 Vernissage for MATRIX

October 2014 Omicron NanoTechnology Version 2.2

Service at Omicron

Should your equipment require service

 Please contact OMICRON headquarters or your local OMICRON representative to
discuss the problem. An up-to-date address list is available on our website

http://www.omicron.de/

 Make sure all necessary information is supplied. Always note the serial
number(s) of your instrument and related equipment (e.g. head, electronics,
preamp…) of your instrument or have it at hand when calling.

If you have to send any equipment back to OMICRON

 Please contact OMICRON headquarters before shipping any equipment.

 Place the instrument it in a polythene bag and use the original packaging and
transport locks.

 Take out a transport insurance policy.

For computer equipment only:

Notice
OMICRON reserves the right to restore the computer to its original state of delivery.

 OMICRON does not accept any liability for the conservation or recovery of any data
present on the computer, hard disk or any supplied data storage devices (e.g.
measured data or licence information, etc.). We expect our customers to perform
data backup procedures regularly. In addition, please carry out the following steps
before shipping any computer equipment:

 If at all possible make a complete backup of all data present on your hard disk
before shipping. If you need to supply a storage device (tape, disk, etc.) send a
copy and keep the original.

 Make sure the computer can be run up in a stand-alone mode. This may mean that
you uninstall/deactivate network configurations or external devices.

 Make sure the original passwords are re-installed or supply the current passwords
by fax or e-mail.

http://www.omicron.de/

